L(s) = 1 | + (−7.12 + 7.12i)3-s + (5.44 − 5.44i)5-s + (−16.6 − 8.05i)7-s − 74.5i·9-s + (12.2 − 12.2i)11-s + (14.9 + 14.9i)13-s + 77.5i·15-s + 97.2i·17-s + (65.2 − 65.2i)19-s + (176. − 61.4i)21-s − 51.7·23-s + 65.7i·25-s + (338. + 338. i)27-s + (19.0 − 19.0i)29-s + 112.·31-s + ⋯ |
L(s) = 1 | + (−1.37 + 1.37i)3-s + (0.486 − 0.486i)5-s + (−0.900 − 0.435i)7-s − 2.76i·9-s + (0.336 − 0.336i)11-s + (0.318 + 0.318i)13-s + 1.33i·15-s + 1.38i·17-s + (0.787 − 0.787i)19-s + (1.83 − 0.638i)21-s − 0.469·23-s + 0.525i·25-s + (2.41 + 2.41i)27-s + (0.121 − 0.121i)29-s + 0.652·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.612 - 0.790i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.612 - 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.7234019424\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7234019424\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (16.6 + 8.05i)T \) |
good | 3 | \( 1 + (7.12 - 7.12i)T - 27iT^{2} \) |
| 5 | \( 1 + (-5.44 + 5.44i)T - 125iT^{2} \) |
| 11 | \( 1 + (-12.2 + 12.2i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (-14.9 - 14.9i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 - 97.2iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (-65.2 + 65.2i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 51.7T + 1.21e4T^{2} \) |
| 29 | \( 1 + (-19.0 + 19.0i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 - 112.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (292. + 292. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 145.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (180. - 180. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 325.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-19.7 - 19.7i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-51.1 - 51.1i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (-286. - 286. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-529. - 529. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 246.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 798.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 629. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (170. - 170. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 113.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.41e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89127745681539047375876176829, −10.11188692772097539066670059378, −9.500881333405775134728927196328, −8.720742016761683834710391541340, −6.85896485958697704121138871607, −6.06814783566427568584995632743, −5.36559205481661042697520023892, −4.23531900685831581931361338173, −3.47307255290809938020883620801, −1.01227218767807607058096187438,
0.34856389817251497167561884207, 1.72403387288010833285413668987, 2.96729031132632836308463206374, 4.99981223093447614656082634807, 5.88187638688759557265329199786, 6.57154079237715100650302773204, 7.18604099843084416213902652012, 8.294240438703296623326382130840, 9.791125458733655099280875369264, 10.39036482886498167926141701477