L(s) = 1 | + (−7.12 + 7.12i)3-s + (5.44 − 5.44i)5-s + (−16.6 − 8.05i)7-s − 74.5i·9-s + (12.2 − 12.2i)11-s + (14.9 + 14.9i)13-s + 77.5i·15-s + 97.2i·17-s + (65.2 − 65.2i)19-s + (176. − 61.4i)21-s − 51.7·23-s + 65.7i·25-s + (338. + 338. i)27-s + (19.0 − 19.0i)29-s + 112.·31-s + ⋯ |
L(s) = 1 | + (−1.37 + 1.37i)3-s + (0.486 − 0.486i)5-s + (−0.900 − 0.435i)7-s − 2.76i·9-s + (0.336 − 0.336i)11-s + (0.318 + 0.318i)13-s + 1.33i·15-s + 1.38i·17-s + (0.787 − 0.787i)19-s + (1.83 − 0.638i)21-s − 0.469·23-s + 0.525i·25-s + (2.41 + 2.41i)27-s + (0.121 − 0.121i)29-s + 0.652·31-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(−0.612−0.790i)Λ(4−s)
Λ(s)=(=(448s/2ΓC(s+3/2)L(s)(−0.612−0.790i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
−0.612−0.790i
|
Analytic conductor: |
26.4328 |
Root analytic conductor: |
5.14128 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(335,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :3/2), −0.612−0.790i)
|
Particular Values
L(2) |
≈ |
0.7234019424 |
L(21) |
≈ |
0.7234019424 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(16.6+8.05i)T |
good | 3 | 1+(7.12−7.12i)T−27iT2 |
| 5 | 1+(−5.44+5.44i)T−125iT2 |
| 11 | 1+(−12.2+12.2i)T−1.33e3iT2 |
| 13 | 1+(−14.9−14.9i)T+2.19e3iT2 |
| 17 | 1−97.2iT−4.91e3T2 |
| 19 | 1+(−65.2+65.2i)T−6.85e3iT2 |
| 23 | 1+51.7T+1.21e4T2 |
| 29 | 1+(−19.0+19.0i)T−2.43e4iT2 |
| 31 | 1−112.T+2.97e4T2 |
| 37 | 1+(292.+292.i)T+5.06e4iT2 |
| 41 | 1−145.T+6.89e4T2 |
| 43 | 1+(180.−180.i)T−7.95e4iT2 |
| 47 | 1+325.T+1.03e5T2 |
| 53 | 1+(−19.7−19.7i)T+1.48e5iT2 |
| 59 | 1+(−51.1−51.1i)T+2.05e5iT2 |
| 61 | 1+(−286.−286.i)T+2.26e5iT2 |
| 67 | 1+(−529.−529.i)T+3.00e5iT2 |
| 71 | 1+246.T+3.57e5T2 |
| 73 | 1+798.T+3.89e5T2 |
| 79 | 1−629.iT−4.93e5T2 |
| 83 | 1+(170.−170.i)T−5.71e5iT2 |
| 89 | 1−113.T+7.04e5T2 |
| 97 | 1−1.41e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89127745681539047375876176829, −10.11188692772097539066670059378, −9.500881333405775134728927196328, −8.720742016761683834710391541340, −6.85896485958697704121138871607, −6.06814783566427568584995632743, −5.36559205481661042697520023892, −4.23531900685831581931361338173, −3.47307255290809938020883620801, −1.01227218767807607058096187438,
0.34856389817251497167561884207, 1.72403387288010833285413668987, 2.96729031132632836308463206374, 4.99981223093447614656082634807, 5.88187638688759557265329199786, 6.57154079237715100650302773204, 7.18604099843084416213902652012, 8.294240438703296623326382130840, 9.791125458733655099280875369264, 10.39036482886498167926141701477