L(s) = 1 | + (3.57 − 3.57i)3-s + (2.98 − 2.98i)5-s + (−17.0 + 7.14i)7-s + 1.45i·9-s + (−10.4 + 10.4i)11-s + (53.8 + 53.8i)13-s − 21.3i·15-s − 29.4i·17-s + (−68.1 + 68.1i)19-s + (−35.5 + 86.6i)21-s + 108.·23-s + 107. i·25-s + (101. + 101. i)27-s + (−36.5 + 36.5i)29-s + 287.·31-s + ⋯ |
L(s) = 1 | + (0.687 − 0.687i)3-s + (0.267 − 0.267i)5-s + (−0.922 + 0.385i)7-s + 0.0538i·9-s + (−0.287 + 0.287i)11-s + (1.14 + 1.14i)13-s − 0.367i·15-s − 0.420i·17-s + (−0.822 + 0.822i)19-s + (−0.369 + 0.899i)21-s + 0.982·23-s + 0.857i·25-s + (0.724 + 0.724i)27-s + (−0.233 + 0.233i)29-s + 1.66·31-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(0.781−0.623i)Λ(4−s)
Λ(s)=(=(448s/2ΓC(s+3/2)L(s)(0.781−0.623i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
0.781−0.623i
|
Analytic conductor: |
26.4328 |
Root analytic conductor: |
5.14128 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(335,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :3/2), 0.781−0.623i)
|
Particular Values
L(2) |
≈ |
2.125734830 |
L(21) |
≈ |
2.125734830 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(17.0−7.14i)T |
good | 3 | 1+(−3.57+3.57i)T−27iT2 |
| 5 | 1+(−2.98+2.98i)T−125iT2 |
| 11 | 1+(10.4−10.4i)T−1.33e3iT2 |
| 13 | 1+(−53.8−53.8i)T+2.19e3iT2 |
| 17 | 1+29.4iT−4.91e3T2 |
| 19 | 1+(68.1−68.1i)T−6.85e3iT2 |
| 23 | 1−108.T+1.21e4T2 |
| 29 | 1+(36.5−36.5i)T−2.43e4iT2 |
| 31 | 1−287.T+2.97e4T2 |
| 37 | 1+(−38.5−38.5i)T+5.06e4iT2 |
| 41 | 1+315.T+6.89e4T2 |
| 43 | 1+(−182.+182.i)T−7.95e4iT2 |
| 47 | 1+323.T+1.03e5T2 |
| 53 | 1+(8.29+8.29i)T+1.48e5iT2 |
| 59 | 1+(246.+246.i)T+2.05e5iT2 |
| 61 | 1+(−289.−289.i)T+2.26e5iT2 |
| 67 | 1+(−98.9−98.9i)T+3.00e5iT2 |
| 71 | 1−1.13e3T+3.57e5T2 |
| 73 | 1+653.T+3.89e5T2 |
| 79 | 1−486.iT−4.93e5T2 |
| 83 | 1+(141.−141.i)T−5.71e5iT2 |
| 89 | 1−497.T+7.04e5T2 |
| 97 | 1−1.55e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.74197123480206663558755826840, −9.670823537621374121776216011503, −8.869040935135564863334554027963, −8.206257684296474221979006545086, −6.98294978351606567266074300146, −6.33739918265368080884330564392, −5.07204778067798915629597999489, −3.65378164169492731276992909307, −2.48570065187673339042116768930, −1.39093068284234384183037432581,
0.66093501095708459165050692015, 2.77865050937312623964575092437, 3.42880971789184737438167811926, 4.53950460838578357897980774561, 6.03596301177167297319127422891, 6.67875008088306863128661055768, 8.150358340228916385479541664568, 8.771150391222301802350179626320, 9.808264674951821521486682486439, 10.39043438092803356682339045775