L(s) = 1 | + (0.382 + 0.923i)2-s + (−0.707 + 0.707i)4-s + (−0.923 + 0.382i)7-s + (−0.923 − 0.382i)8-s + (0.923 + 0.382i)9-s + (0.324 + 1.63i)11-s + (−0.707 − 0.707i)14-s − i·16-s + i·18-s + (−1.38 + 0.923i)22-s + (0.707 − 1.70i)23-s + (−0.382 − 0.923i)25-s + (0.382 − 0.923i)28-s + (0.216 − 1.08i)29-s + (0.923 − 0.382i)32-s + ⋯ |
L(s) = 1 | + (0.382 + 0.923i)2-s + (−0.707 + 0.707i)4-s + (−0.923 + 0.382i)7-s + (−0.923 − 0.382i)8-s + (0.923 + 0.382i)9-s + (0.324 + 1.63i)11-s + (−0.707 − 0.707i)14-s − i·16-s + i·18-s + (−1.38 + 0.923i)22-s + (0.707 − 1.70i)23-s + (−0.382 − 0.923i)25-s + (0.382 − 0.923i)28-s + (0.216 − 1.08i)29-s + (0.923 − 0.382i)32-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(−0.290−0.956i)Λ(1−s)
Λ(s)=(=(448s/2ΓC(s)L(s)(−0.290−0.956i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
−0.290−0.956i
|
Analytic conductor: |
0.223581 |
Root analytic conductor: |
0.472843 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :0), −0.290−0.956i)
|
Particular Values
L(21) |
≈ |
0.9153627997 |
L(21) |
≈ |
0.9153627997 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.382−0.923i)T |
| 7 | 1+(0.923−0.382i)T |
good | 3 | 1+(−0.923−0.382i)T2 |
| 5 | 1+(0.382+0.923i)T2 |
| 11 | 1+(−0.324−1.63i)T+(−0.923+0.382i)T2 |
| 13 | 1+(0.382−0.923i)T2 |
| 17 | 1−iT2 |
| 19 | 1+(−0.382+0.923i)T2 |
| 23 | 1+(−0.707+1.70i)T+(−0.707−0.707i)T2 |
| 29 | 1+(−0.216+1.08i)T+(−0.923−0.382i)T2 |
| 31 | 1+T2 |
| 37 | 1+(0.324+0.216i)T+(0.382+0.923i)T2 |
| 41 | 1+(0.707+0.707i)T2 |
| 43 | 1+(0.382−0.0761i)T+(0.923−0.382i)T2 |
| 47 | 1−iT2 |
| 53 | 1+(−0.382−1.92i)T+(−0.923+0.382i)T2 |
| 59 | 1+(0.382+0.923i)T2 |
| 61 | 1+(−0.923−0.382i)T2 |
| 67 | 1+(1.92+0.382i)T+(0.923+0.382i)T2 |
| 71 | 1+(−1.30+0.541i)T+(0.707−0.707i)T2 |
| 73 | 1+(−0.707−0.707i)T2 |
| 79 | 1+(0.541−0.541i)T−iT2 |
| 83 | 1+(−0.382+0.923i)T2 |
| 89 | 1+(0.707−0.707i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.11639916572497631634618615686, −10.35975306681417962045267137553, −9.703128394198623611340275720439, −8.827714643004513568855999051045, −7.66380835195516936024913954204, −6.87535110408835168306397938790, −6.18073434917292392613427763235, −4.77629470737715626755322504908, −4.13307241291556885672749716365, −2.51143894717075304928801970058,
1.27416153341040169943284816662, 3.29279849857578592394624745439, 3.69589403950151495664122088322, 5.20708169082076706543131504249, 6.20107513393605711136734091612, 7.21785965465829034292177828359, 8.726505306528812413204516739893, 9.451934533169859489030986156027, 10.22517330402765310952347166300, 11.13514997682342806357188859709