Properties

Label 2-448-7.6-c6-0-65
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $103.064$
Root an. cond. $10.1520$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 343·7-s + 729·9-s + 1.96e3·11-s + 2.27e4·23-s + 1.56e4·25-s + 2.12e4·29-s − 1.01e5·37-s − 1.26e5·43-s + 1.17e5·49-s − 5.03e4·53-s + 2.50e5·63-s − 5.39e4·67-s + 2.42e5·71-s + 6.72e5·77-s − 9.29e5·79-s + 5.31e5·81-s + 1.43e6·99-s + 4.63e4·107-s + 2.58e6·109-s − 2.43e6·113-s + ⋯
L(s)  = 1  + 7-s + 9-s + 1.47·11-s + 1.86·23-s + 25-s + 0.870·29-s − 1.99·37-s − 1.59·43-s + 49-s − 0.338·53-s + 63-s − 0.179·67-s + 0.677·71-s + 1.47·77-s − 1.88·79-s + 81-s + 1.47·99-s + 0.0378·107-s + 1.99·109-s − 1.68·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(103.064\)
Root analytic conductor: \(10.1520\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: $\chi_{448} (321, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(3.475358231\)
\(L(\frac12)\) \(\approx\) \(3.475358231\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - p^{3} T \)
good3 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
5 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
11 \( 1 - 1962 T + p^{6} T^{2} \)
13 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
17 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
19 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
23 \( 1 - 22734 T + p^{6} T^{2} \)
29 \( 1 - 21222 T + p^{6} T^{2} \)
31 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
37 \( 1 + 101194 T + p^{6} T^{2} \)
41 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
43 \( 1 + 126614 T + p^{6} T^{2} \)
47 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
53 \( 1 + 50346 T + p^{6} T^{2} \)
59 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
61 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
67 \( 1 + 53926 T + p^{6} T^{2} \)
71 \( 1 - 242478 T + p^{6} T^{2} \)
73 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
79 \( 1 + 929378 T + p^{6} T^{2} \)
83 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
89 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
97 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.17350632995548545727074508917, −9.079512125139941468306296833247, −8.458750738991167628950658128523, −7.13950758590313430047248197144, −6.68183491128957916688120962252, −5.13949215897389281862647903919, −4.43826224331333266866007668485, −3.28759531102770418256258428580, −1.67933471948555487527395574046, −1.01765060804365061456293282038, 1.01765060804365061456293282038, 1.67933471948555487527395574046, 3.28759531102770418256258428580, 4.43826224331333266866007668485, 5.13949215897389281862647903919, 6.68183491128957916688120962252, 7.13950758590313430047248197144, 8.458750738991167628950658128523, 9.079512125139941468306296833247, 10.17350632995548545727074508917

Graph of the $Z$-function along the critical line