L(s) = 1 | + (−0.430 − 1.60i)2-s + (1.35 + 1.08i)3-s + (−0.661 + 0.382i)4-s + (−2.23 + 0.154i)5-s + (1.15 − 2.63i)6-s + (−1.73 + 0.465i)7-s + (−1.45 − 1.45i)8-s + (0.661 + 2.92i)9-s + (1.20 + 3.51i)10-s + (3.12 + 1.80i)11-s + (−1.30 − 0.198i)12-s + (−1.27 − 0.342i)13-s + (1.49 + 2.59i)14-s + (−3.18 − 2.20i)15-s + (−2.47 + 4.28i)16-s + (0.277 − 0.277i)17-s + ⋯ |
L(s) = 1 | + (−0.304 − 1.13i)2-s + (0.781 + 0.624i)3-s + (−0.330 + 0.191i)4-s + (−0.997 + 0.0690i)5-s + (0.471 − 1.07i)6-s + (−0.656 + 0.175i)7-s + (−0.513 − 0.513i)8-s + (0.220 + 0.975i)9-s + (0.381 + 1.11i)10-s + (0.942 + 0.544i)11-s + (−0.377 − 0.0573i)12-s + (−0.354 − 0.0950i)13-s + (0.399 + 0.692i)14-s + (−0.822 − 0.568i)15-s + (−0.618 + 1.07i)16-s + (0.0671 − 0.0671i)17-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(0.621+0.783i)Λ(2−s)
Λ(s)=(=(45s/2ΓC(s+1/2)L(s)(0.621+0.783i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
0.621+0.783i
|
Analytic conductor: |
0.359326 |
Root analytic conductor: |
0.599438 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :1/2), 0.621+0.783i)
|
Particular Values
L(1) |
≈ |
0.692211−0.334449i |
L(21) |
≈ |
0.692211−0.334449i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.35−1.08i)T |
| 5 | 1+(2.23−0.154i)T |
good | 2 | 1+(0.430+1.60i)T+(−1.73+i)T2 |
| 7 | 1+(1.73−0.465i)T+(6.06−3.5i)T2 |
| 11 | 1+(−3.12−1.80i)T+(5.5+9.52i)T2 |
| 13 | 1+(1.27+0.342i)T+(11.2+6.5i)T2 |
| 17 | 1+(−0.277+0.277i)T−17iT2 |
| 19 | 1+6.25iT−19T2 |
| 23 | 1+(−0.579+2.16i)T+(−19.9−11.5i)T2 |
| 29 | 1+(1.56−2.71i)T+(−14.5−25.1i)T2 |
| 31 | 1+(2.42+4.20i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−5.55−5.55i)T+37iT2 |
| 41 | 1+(−1.29+0.744i)T+(20.5−35.5i)T2 |
| 43 | 1+(1.10+4.10i)T+(−37.2+21.5i)T2 |
| 47 | 1+(1.02+3.82i)T+(−40.7+23.5i)T2 |
| 53 | 1+(−7.48−7.48i)T+53iT2 |
| 59 | 1+(−0.279−0.483i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.96−5.13i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.90−10.8i)T+(−58.0−33.5i)T2 |
| 71 | 1+8.01iT−71T2 |
| 73 | 1+(1.29−1.29i)T−73iT2 |
| 79 | 1+(−6.96−4.02i)T+(39.5+68.4i)T2 |
| 83 | 1+(0.560−0.150i)T+(71.8−41.5i)T2 |
| 89 | 1+16.4T+89T2 |
| 97 | 1+(−5.14+1.37i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.48814334931586089528425035668, −14.84401014764592595659853185392, −13.11617539726927643038549088056, −11.97751315480468378099664596534, −10.92934913075462471574604889698, −9.699828025443930919117313866918, −8.839942659986665334564159960456, −7.05478013129401502391818272930, −4.21548998350390319370472016168, −2.86093392629714111854334407398,
3.55540741718480021542886524616, 6.25278543188853638197576661280, 7.35680509729583724471517328201, 8.267373598673132246039176657071, 9.398619374399456357120601865111, 11.61150115226788427953733667974, 12.65047593048595670642384387924, 14.21957815217478921101767747719, 14.92090090360207578431044602671, 16.09261190134310147601321615436