Properties

Label 2-45-45.29-c2-0-0
Degree 22
Conductor 4545
Sign 0.02680.999i-0.0268 - 0.999i
Analytic cond. 1.226161.22616
Root an. cond. 1.107321.10732
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.264 + 0.457i)2-s + (−2.94 + 0.546i)3-s + (1.86 + 3.22i)4-s + (−0.819 + 4.93i)5-s + (0.529 − 1.49i)6-s + (2.39 + 1.38i)7-s − 4.08·8-s + (8.40 − 3.22i)9-s + (−2.04 − 1.67i)10-s + (−7.99 − 4.61i)11-s + (−7.24 − 8.48i)12-s + (11.7 − 6.79i)13-s + (−1.26 + 0.731i)14-s + (−0.275 − 14.9i)15-s + (−6.36 + 11.0i)16-s + 12.2·17-s + ⋯
L(s)  = 1  + (−0.132 + 0.228i)2-s + (−0.983 + 0.182i)3-s + (0.465 + 0.805i)4-s + (−0.163 + 0.986i)5-s + (0.0883 − 0.249i)6-s + (0.342 + 0.197i)7-s − 0.510·8-s + (0.933 − 0.357i)9-s + (−0.204 − 0.167i)10-s + (−0.726 − 0.419i)11-s + (−0.603 − 0.707i)12-s + (0.905 − 0.522i)13-s + (−0.0904 + 0.0522i)14-s + (−0.0183 − 0.999i)15-s + (−0.397 + 0.688i)16-s + 0.718·17-s + ⋯

Functional equation

Λ(s)=(45s/2ΓC(s)L(s)=((0.02680.999i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0268 - 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(45s/2ΓC(s+1)L(s)=((0.02680.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0268 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 4545    =    3253^{2} \cdot 5
Sign: 0.02680.999i-0.0268 - 0.999i
Analytic conductor: 1.226161.22616
Root analytic conductor: 1.107321.10732
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ45(29,)\chi_{45} (29, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 45, ( :1), 0.02680.999i)(2,\ 45,\ (\ :1),\ -0.0268 - 0.999i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.590075+0.606142i0.590075 + 0.606142i
L(12)L(\frac12) \approx 0.590075+0.606142i0.590075 + 0.606142i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(2.940.546i)T 1 + (2.94 - 0.546i)T
5 1+(0.8194.93i)T 1 + (0.819 - 4.93i)T
good2 1+(0.2640.457i)T+(23.46i)T2 1 + (0.264 - 0.457i)T + (-2 - 3.46i)T^{2}
7 1+(2.391.38i)T+(24.5+42.4i)T2 1 + (-2.39 - 1.38i)T + (24.5 + 42.4i)T^{2}
11 1+(7.99+4.61i)T+(60.5+104.i)T2 1 + (7.99 + 4.61i)T + (60.5 + 104. i)T^{2}
13 1+(11.7+6.79i)T+(84.5146.i)T2 1 + (-11.7 + 6.79i)T + (84.5 - 146. i)T^{2}
17 112.2T+289T2 1 - 12.2T + 289T^{2}
19 120.2T+361T2 1 - 20.2T + 361T^{2}
23 1+(1.182.05i)T+(264.5+458.i)T2 1 + (-1.18 - 2.05i)T + (-264.5 + 458. i)T^{2}
29 1+(30.217.4i)T+(420.5+728.i)T2 1 + (-30.2 - 17.4i)T + (420.5 + 728. i)T^{2}
31 1+(14.7+25.5i)T+(480.5+832.i)T2 1 + (14.7 + 25.5i)T + (-480.5 + 832. i)T^{2}
37 164.3iT1.36e3T2 1 - 64.3iT - 1.36e3T^{2}
41 1+(34.5+19.9i)T+(840.51.45e3i)T2 1 + (-34.5 + 19.9i)T + (840.5 - 1.45e3i)T^{2}
43 1+(58.5+33.7i)T+(924.5+1.60e3i)T2 1 + (58.5 + 33.7i)T + (924.5 + 1.60e3i)T^{2}
47 1+(46.6+80.8i)T+(1.10e31.91e3i)T2 1 + (-46.6 + 80.8i)T + (-1.10e3 - 1.91e3i)T^{2}
53 1+9.82T+2.80e3T2 1 + 9.82T + 2.80e3T^{2}
59 1+(50.629.2i)T+(1.74e33.01e3i)T2 1 + (50.6 - 29.2i)T + (1.74e3 - 3.01e3i)T^{2}
61 1+(7.75+13.4i)T+(1.86e33.22e3i)T2 1 + (-7.75 + 13.4i)T + (-1.86e3 - 3.22e3i)T^{2}
67 1+(13.4+7.78i)T+(2.24e33.88e3i)T2 1 + (-13.4 + 7.78i)T + (2.24e3 - 3.88e3i)T^{2}
71 153.1iT5.04e3T2 1 - 53.1iT - 5.04e3T^{2}
73 1+23.6iT5.32e3T2 1 + 23.6iT - 5.32e3T^{2}
79 1+(17.229.9i)T+(3.12e35.40e3i)T2 1 + (17.2 - 29.9i)T + (-3.12e3 - 5.40e3i)T^{2}
83 1+(37.665.2i)T+(3.44e35.96e3i)T2 1 + (37.6 - 65.2i)T + (-3.44e3 - 5.96e3i)T^{2}
89 1+29.1iT7.92e3T2 1 + 29.1iT - 7.92e3T^{2}
97 1+(54.031.1i)T+(4.70e3+8.14e3i)T2 1 + (-54.0 - 31.1i)T + (4.70e3 + 8.14e3i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−15.91307288501522323118606985560, −15.22534996302718978577428633576, −13.49712467464394461092781349153, −12.06219080731680356012510172686, −11.25622266843112344467808824360, −10.24415717246914362517933182415, −8.159117300027897720386448816613, −6.97583257645533694488713138437, −5.65137793829069887936179797031, −3.35060139408119728236036008176, 1.23739139284384958614677443159, 4.82334484254527890910471385314, 5.97230338397255632390341613318, 7.62662811044669404273722525300, 9.483223962644938215894795746335, 10.70617838885786134720666726326, 11.68109525603225862474948363979, 12.69353225877421921418533363155, 14.09149608822447752017075200964, 15.81539831347632139107942965936

Graph of the ZZ-function along the critical line