L(s) = 1 | + (−0.264 + 0.457i)2-s + (−2.94 + 0.546i)3-s + (1.86 + 3.22i)4-s + (−0.819 + 4.93i)5-s + (0.529 − 1.49i)6-s + (2.39 + 1.38i)7-s − 4.08·8-s + (8.40 − 3.22i)9-s + (−2.04 − 1.67i)10-s + (−7.99 − 4.61i)11-s + (−7.24 − 8.48i)12-s + (11.7 − 6.79i)13-s + (−1.26 + 0.731i)14-s + (−0.275 − 14.9i)15-s + (−6.36 + 11.0i)16-s + 12.2·17-s + ⋯ |
L(s) = 1 | + (−0.132 + 0.228i)2-s + (−0.983 + 0.182i)3-s + (0.465 + 0.805i)4-s + (−0.163 + 0.986i)5-s + (0.0883 − 0.249i)6-s + (0.342 + 0.197i)7-s − 0.510·8-s + (0.933 − 0.357i)9-s + (−0.204 − 0.167i)10-s + (−0.726 − 0.419i)11-s + (−0.603 − 0.707i)12-s + (0.905 − 0.522i)13-s + (−0.0904 + 0.0522i)14-s + (−0.0183 − 0.999i)15-s + (−0.397 + 0.688i)16-s + 0.718·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0268 - 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0268 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.590075 + 0.606142i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.590075 + 0.606142i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (2.94 - 0.546i)T \) |
| 5 | \( 1 + (0.819 - 4.93i)T \) |
good | 2 | \( 1 + (0.264 - 0.457i)T + (-2 - 3.46i)T^{2} \) |
| 7 | \( 1 + (-2.39 - 1.38i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (7.99 + 4.61i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-11.7 + 6.79i)T + (84.5 - 146. i)T^{2} \) |
| 17 | \( 1 - 12.2T + 289T^{2} \) |
| 19 | \( 1 - 20.2T + 361T^{2} \) |
| 23 | \( 1 + (-1.18 - 2.05i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-30.2 - 17.4i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (14.7 + 25.5i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 - 64.3iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-34.5 + 19.9i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (58.5 + 33.7i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-46.6 + 80.8i)T + (-1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + 9.82T + 2.80e3T^{2} \) |
| 59 | \( 1 + (50.6 - 29.2i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-7.75 + 13.4i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-13.4 + 7.78i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 53.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 23.6iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (17.2 - 29.9i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (37.6 - 65.2i)T + (-3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + 29.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-54.0 - 31.1i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.91307288501522323118606985560, −15.22534996302718978577428633576, −13.49712467464394461092781349153, −12.06219080731680356012510172686, −11.25622266843112344467808824360, −10.24415717246914362517933182415, −8.159117300027897720386448816613, −6.97583257645533694488713138437, −5.65137793829069887936179797031, −3.35060139408119728236036008176,
1.23739139284384958614677443159, 4.82334484254527890910471385314, 5.97230338397255632390341613318, 7.62662811044669404273722525300, 9.483223962644938215894795746335, 10.70617838885786134720666726326, 11.68109525603225862474948363979, 12.69353225877421921418533363155, 14.09149608822447752017075200964, 15.81539831347632139107942965936