L(s) = 1 | + (0.186 − 0.0499i)2-s + (1.53 − 0.806i)3-s + (−1.69 + 0.981i)4-s + (−2.04 − 0.893i)5-s + (0.245 − 0.226i)6-s + (0.632 + 2.35i)7-s + (−0.540 + 0.540i)8-s + (1.69 − 2.47i)9-s + (−0.426 − 0.0641i)10-s + (−2.14 − 1.23i)11-s + (−1.81 + 2.87i)12-s + (−0.422 + 1.57i)13-s + (0.235 + 0.407i)14-s + (−3.86 + 0.282i)15-s + (1.88 − 3.27i)16-s + (0.403 + 0.403i)17-s + ⋯ |
L(s) = 1 | + (0.131 − 0.0352i)2-s + (0.885 − 0.465i)3-s + (−0.849 + 0.490i)4-s + (−0.916 − 0.399i)5-s + (0.100 − 0.0925i)6-s + (0.238 + 0.891i)7-s + (−0.191 + 0.191i)8-s + (0.566 − 0.823i)9-s + (−0.134 − 0.0202i)10-s + (−0.646 − 0.373i)11-s + (−0.523 + 0.829i)12-s + (−0.117 + 0.436i)13-s + (0.0629 + 0.108i)14-s + (−0.997 + 0.0728i)15-s + (0.472 − 0.818i)16-s + (0.0979 + 0.0979i)17-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(0.985+0.170i)Λ(2−s)
Λ(s)=(=(45s/2ΓC(s+1/2)L(s)(0.985+0.170i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
0.985+0.170i
|
Analytic conductor: |
0.359326 |
Root analytic conductor: |
0.599438 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(38,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :1/2), 0.985+0.170i)
|
Particular Values
L(1) |
≈ |
0.843395−0.0722655i |
L(21) |
≈ |
0.843395−0.0722655i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.53+0.806i)T |
| 5 | 1+(2.04+0.893i)T |
good | 2 | 1+(−0.186+0.0499i)T+(1.73−i)T2 |
| 7 | 1+(−0.632−2.35i)T+(−6.06+3.5i)T2 |
| 11 | 1+(2.14+1.23i)T+(5.5+9.52i)T2 |
| 13 | 1+(0.422−1.57i)T+(−11.2−6.5i)T2 |
| 17 | 1+(−0.403−0.403i)T+17iT2 |
| 19 | 1+4.28iT−19T2 |
| 23 | 1+(−6.82−1.82i)T+(19.9+11.5i)T2 |
| 29 | 1+(3.20−5.55i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.97+3.41i)T+(−15.5+26.8i)T2 |
| 37 | 1+(0.171−0.171i)T−37iT2 |
| 41 | 1+(6.52−3.76i)T+(20.5−35.5i)T2 |
| 43 | 1+(4.95−1.32i)T+(37.2−21.5i)T2 |
| 47 | 1+(−2.91+0.780i)T+(40.7−23.5i)T2 |
| 53 | 1+(6.12−6.12i)T−53iT2 |
| 59 | 1+(2.27+3.93i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.235−0.408i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.65−0.443i)T+(58.0+33.5i)T2 |
| 71 | 1+3.50iT−71T2 |
| 73 | 1+(−6.88−6.88i)T+73iT2 |
| 79 | 1+(6.50+3.75i)T+(39.5+68.4i)T2 |
| 83 | 1+(2.85+10.6i)T+(−71.8+41.5i)T2 |
| 89 | 1−2.90T+89T2 |
| 97 | 1+(0.379+1.41i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.57054408431111275645791441484, −14.71341217093815769545143736435, −13.34866655699360315306199241637, −12.63769672860124598186814695771, −11.49596861863144305441438697106, −9.179237388731723501579144344548, −8.544340175786030015721421855936, −7.40425802778464981417182416787, −4.92754752185020384520696212780, −3.21939218442922471925428814424,
3.61896249127040887007475587932, 4.86688862183632899891884717176, 7.39477596190944703343819281460, 8.456429090018229660350434918857, 9.976005614845232100625842974184, 10.78940850557615796307973086992, 12.75974420927033405520912497223, 13.85471825835248330716911031787, 14.78597163194048070104720306109, 15.48759207724960288791790452513