L(s) = 1 | + (−5 + 5i)2-s − 34i·4-s + 25·5-s + (40 − 40i)7-s + (90 + 90i)8-s + (−125 + 125i)10-s − 100·11-s + (205 + 205i)13-s + 400i·14-s − 356·16-s + (235 − 235i)17-s − 72i·19-s − 850i·20-s + (500 − 500i)22-s + (340 + 340i)23-s + ⋯ |
L(s) = 1 | + (−1.25 + 1.25i)2-s − 2.12i·4-s + 5-s + (0.816 − 0.816i)7-s + (1.40 + 1.40i)8-s + (−1.25 + 1.25i)10-s − 0.826·11-s + (1.21 + 1.21i)13-s + 2.04i·14-s − 1.39·16-s + (0.813 − 0.813i)17-s − 0.199i·19-s − 2.12i·20-s + (1.03 − 1.03i)22-s + (0.642 + 0.642i)23-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(0.525−0.850i)Λ(5−s)
Λ(s)=(=(45s/2ΓC(s+2)L(s)(0.525−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
0.525−0.850i
|
Analytic conductor: |
4.65164 |
Root analytic conductor: |
2.15676 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(28,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :2), 0.525−0.850i)
|
Particular Values
L(25) |
≈ |
0.884644+0.493221i |
L(21) |
≈ |
0.884644+0.493221i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−25T |
good | 2 | 1+(5−5i)T−16iT2 |
| 7 | 1+(−40+40i)T−2.40e3iT2 |
| 11 | 1+100T+1.46e4T2 |
| 13 | 1+(−205−205i)T+2.85e4iT2 |
| 17 | 1+(−235+235i)T−8.35e4iT2 |
| 19 | 1+72iT−1.30e5T2 |
| 23 | 1+(−340−340i)T+2.79e5iT2 |
| 29 | 1+450iT−7.07e5T2 |
| 31 | 1−428T+9.23e5T2 |
| 37 | 1+(755−755i)T−1.87e6iT2 |
| 41 | 1−950T+2.82e6T2 |
| 43 | 1+(1.22e3+1.22e3i)T+3.41e6iT2 |
| 47 | 1+(320−320i)T−4.87e6iT2 |
| 53 | 1+(−505−505i)T+7.89e6iT2 |
| 59 | 1+6.30e3iT−1.21e7T2 |
| 61 | 1+3.80e3T+1.38e7T2 |
| 67 | 1+(−340+340i)T−2.01e7iT2 |
| 71 | 1+3.40e3T+2.54e7T2 |
| 73 | 1+(−415−415i)T+2.83e7iT2 |
| 79 | 1−6.73e3iT−3.89e7T2 |
| 83 | 1+(680+680i)T+4.74e7iT2 |
| 89 | 1+2.25e3iT−6.27e7T2 |
| 97 | 1+(−1.61e3+1.61e3i)T−8.85e7iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.60902321995802157718247358034, −14.22887761342581863350793123036, −13.60469477727313725774403377547, −11.13863414495670208643152394214, −10.05764281745735347802030116292, −8.978313391807621173776114886713, −7.74570646486791488147425204999, −6.56798480812039893955511375980, −5.18008670430117112402853184422, −1.29531835230208170270457325946,
1.39363567087694261239185012619, 2.88303186380730606771898343364, 5.61584908961168104185922907072, 8.063258574828759974350640315673, 8.842516389332419937877742541108, 10.27816425535131573361315562552, 10.87071480473455952488790464967, 12.32798336888523913000149918694, 13.23243016215544772796885912275, 14.93335667345749484841391268839