L(s) = 1 | + (−0.173 − 0.984i)2-s + (0.766 + 0.642i)3-s + (−0.939 + 0.342i)4-s + (0.5 − 0.866i)6-s + (0.5 + 0.866i)8-s + (0.173 + 0.984i)9-s + (1.11 − 0.642i)11-s + (−0.939 − 0.342i)12-s + (0.766 − 0.642i)16-s + (−1.70 + 0.300i)17-s + (0.939 − 0.342i)18-s + (0.939 − 0.342i)19-s + (−0.826 − 0.984i)22-s + (−0.173 + 0.984i)24-s + (−0.766 − 0.642i)25-s + ⋯ |
L(s) = 1 | + (−0.173 − 0.984i)2-s + (0.766 + 0.642i)3-s + (−0.939 + 0.342i)4-s + (0.5 − 0.866i)6-s + (0.5 + 0.866i)8-s + (0.173 + 0.984i)9-s + (1.11 − 0.642i)11-s + (−0.939 − 0.342i)12-s + (0.766 − 0.642i)16-s + (−1.70 + 0.300i)17-s + (0.939 − 0.342i)18-s + (0.939 − 0.342i)19-s + (−0.826 − 0.984i)22-s + (−0.173 + 0.984i)24-s + (−0.766 − 0.642i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.877 + 0.479i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.877 + 0.479i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9314978412\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9314978412\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.173 + 0.984i)T \) |
| 3 | \( 1 + (-0.766 - 0.642i)T \) |
| 19 | \( 1 + (-0.939 + 0.342i)T \) |
good | 5 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-1.11 + 0.642i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (1.70 - 0.300i)T + (0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (1.43 - 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (0.266 + 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (-0.673 - 0.118i)T + (0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + (1.17 - 0.984i)T + (0.173 - 0.984i)T^{2} \) |
| 79 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.592 - 0.342i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.766 - 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (-0.673 + 0.118i)T + (0.939 - 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27688028922704793334091761906, −10.23058347715233385500414472807, −9.475539906193342698303658864429, −8.750624527835112901274139890973, −8.089665006437769031637283727172, −6.63597500865994226887285714836, −5.04932523465199771566247850214, −4.07911500863910084336060449241, −3.21818330032895592244622420676, −1.90859637899668004557641393485,
1.70915252033712958453505294437, 3.57717016684326603828098256185, 4.65477982764100097920471162564, 6.08843723779040191813334854047, 6.93599250019069259339813607499, 7.52610850197381885973726946623, 8.670968385659675939929295035158, 9.213843311972728815636261830780, 10.01714259816695836277694633853, 11.52550825316153266248530674854