L(s) = 1 | + (−0.173 − 0.984i)2-s + (0.766 + 0.642i)3-s + (−0.939 + 0.342i)4-s + (0.5 − 0.866i)6-s + (0.5 + 0.866i)8-s + (0.173 + 0.984i)9-s + (1.11 − 0.642i)11-s + (−0.939 − 0.342i)12-s + (0.766 − 0.642i)16-s + (−1.70 + 0.300i)17-s + (0.939 − 0.342i)18-s + (0.939 − 0.342i)19-s + (−0.826 − 0.984i)22-s + (−0.173 + 0.984i)24-s + (−0.766 − 0.642i)25-s + ⋯ |
L(s) = 1 | + (−0.173 − 0.984i)2-s + (0.766 + 0.642i)3-s + (−0.939 + 0.342i)4-s + (0.5 − 0.866i)6-s + (0.5 + 0.866i)8-s + (0.173 + 0.984i)9-s + (1.11 − 0.642i)11-s + (−0.939 − 0.342i)12-s + (0.766 − 0.642i)16-s + (−1.70 + 0.300i)17-s + (0.939 − 0.342i)18-s + (0.939 − 0.342i)19-s + (−0.826 − 0.984i)22-s + (−0.173 + 0.984i)24-s + (−0.766 − 0.642i)25-s + ⋯ |
Λ(s)=(=(456s/2ΓC(s)L(s)(0.877+0.479i)Λ(1−s)
Λ(s)=(=(456s/2ΓC(s)L(s)(0.877+0.479i)Λ(1−s)
Degree: |
2 |
Conductor: |
456
= 23⋅3⋅19
|
Sign: |
0.877+0.479i
|
Analytic conductor: |
0.227573 |
Root analytic conductor: |
0.477046 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ456(371,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 456, ( :0), 0.877+0.479i)
|
Particular Values
L(21) |
≈ |
0.9314978412 |
L(21) |
≈ |
0.9314978412 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.173+0.984i)T |
| 3 | 1+(−0.766−0.642i)T |
| 19 | 1+(−0.939+0.342i)T |
good | 5 | 1+(0.766+0.642i)T2 |
| 7 | 1+(0.5+0.866i)T2 |
| 11 | 1+(−1.11+0.642i)T+(0.5−0.866i)T2 |
| 13 | 1+(0.173+0.984i)T2 |
| 17 | 1+(1.70−0.300i)T+(0.939−0.342i)T2 |
| 23 | 1+(0.766−0.642i)T2 |
| 29 | 1+(0.939+0.342i)T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1+T2 |
| 41 | 1+(1.43−1.20i)T+(0.173−0.984i)T2 |
| 43 | 1+(0.939+0.342i)T+(0.766+0.642i)T2 |
| 47 | 1+(−0.939−0.342i)T2 |
| 53 | 1+(−0.766+0.642i)T2 |
| 59 | 1+(0.266+1.50i)T+(−0.939+0.342i)T2 |
| 61 | 1+(−0.766+0.642i)T2 |
| 67 | 1+(−0.673−0.118i)T+(0.939+0.342i)T2 |
| 71 | 1+(−0.766−0.642i)T2 |
| 73 | 1+(1.17−0.984i)T+(0.173−0.984i)T2 |
| 79 | 1+(0.173−0.984i)T2 |
| 83 | 1+(−0.592−0.342i)T+(0.5+0.866i)T2 |
| 89 | 1+(−0.766−0.642i)T+(0.173+0.984i)T2 |
| 97 | 1+(−0.673+0.118i)T+(0.939−0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27688028922704793334091761906, −10.23058347715233385500414472807, −9.475539906193342698303658864429, −8.750624527835112901274139890973, −8.089665006437769031637283727172, −6.63597500865994226887285714836, −5.04932523465199771566247850214, −4.07911500863910084336060449241, −3.21818330032895592244622420676, −1.90859637899668004557641393485,
1.70915252033712958453505294437, 3.57717016684326603828098256185, 4.65477982764100097920471162564, 6.08843723779040191813334854047, 6.93599250019069259339813607499, 7.52610850197381885973726946623, 8.670968385659675939929295035158, 9.213843311972728815636261830780, 10.01714259816695836277694633853, 11.52550825316153266248530674854