Properties

Label 2-459-1.1-c1-0-14
Degree $2$
Conductor $459$
Sign $-1$
Analytic cond. $3.66513$
Root an. cond. $1.91445$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 5-s − 2·7-s + 3·8-s − 10-s − 5·13-s + 2·14-s − 16-s + 17-s − 19-s − 20-s + 23-s − 4·25-s + 5·26-s + 2·28-s − 9·29-s − 8·31-s − 5·32-s − 34-s − 2·35-s − 2·37-s + 38-s + 3·40-s + 3·41-s + 7·43-s − 46-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.447·5-s − 0.755·7-s + 1.06·8-s − 0.316·10-s − 1.38·13-s + 0.534·14-s − 1/4·16-s + 0.242·17-s − 0.229·19-s − 0.223·20-s + 0.208·23-s − 4/5·25-s + 0.980·26-s + 0.377·28-s − 1.67·29-s − 1.43·31-s − 0.883·32-s − 0.171·34-s − 0.338·35-s − 0.328·37-s + 0.162·38-s + 0.474·40-s + 0.468·41-s + 1.06·43-s − 0.147·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(459\)    =    \(3^{3} \cdot 17\)
Sign: $-1$
Analytic conductor: \(3.66513\)
Root analytic conductor: \(1.91445\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 459,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 - T \)
good2 \( 1 + T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 + 9 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - T + p T^{2} \)
71 \( 1 - 11 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.30729061604743667613050680491, −9.486856844687813433475551610921, −9.232263132127470389713380311071, −7.85873665118377503458386090870, −7.19141577818664657143012339932, −5.87858091946480144424247943451, −4.87958568118636028443679374257, −3.59857441008458632308323977451, −1.99713451755220112161339413052, 0, 1.99713451755220112161339413052, 3.59857441008458632308323977451, 4.87958568118636028443679374257, 5.87858091946480144424247943451, 7.19141577818664657143012339932, 7.85873665118377503458386090870, 9.232263132127470389713380311071, 9.486856844687813433475551610921, 10.30729061604743667613050680491

Graph of the $Z$-function along the critical line