Properties

Label 2-459-1.1-c1-0-17
Degree $2$
Conductor $459$
Sign $1$
Analytic cond. $3.66513$
Root an. cond. $1.91445$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 4·5-s + 7-s + 8·10-s − 6·11-s + 13-s + 2·14-s − 4·16-s + 17-s − 7·19-s + 8·20-s − 12·22-s + 4·23-s + 11·25-s + 2·26-s + 2·28-s + 6·29-s − 8·31-s − 8·32-s + 2·34-s + 4·35-s + 37-s − 14·38-s + 4·43-s − 12·44-s + 8·46-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.78·5-s + 0.377·7-s + 2.52·10-s − 1.80·11-s + 0.277·13-s + 0.534·14-s − 16-s + 0.242·17-s − 1.60·19-s + 1.78·20-s − 2.55·22-s + 0.834·23-s + 11/5·25-s + 0.392·26-s + 0.377·28-s + 1.11·29-s − 1.43·31-s − 1.41·32-s + 0.342·34-s + 0.676·35-s + 0.164·37-s − 2.27·38-s + 0.609·43-s − 1.80·44-s + 1.17·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(459\)    =    \(3^{3} \cdot 17\)
Sign: $1$
Analytic conductor: \(3.66513\)
Root analytic conductor: \(1.91445\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 459,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.364460632\)
\(L(\frac12)\) \(\approx\) \(3.364460632\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 - T \)
good2 \( 1 - p T + p T^{2} \)
5 \( 1 - 4 T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 - T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 3 T + p T^{2} \)
79 \( 1 + 9 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90508481410394760093183518479, −10.51882698778784990220643195703, −9.355188181832179362346103161628, −8.379898543961470967191694971495, −6.92940427570655812640731061069, −5.93408556270929922136180838803, −5.37713357577775960919289343412, −4.56441091173163015164546337868, −2.90936379528655043489992111903, −2.09364906131822284439528208110, 2.09364906131822284439528208110, 2.90936379528655043489992111903, 4.56441091173163015164546337868, 5.37713357577775960919289343412, 5.93408556270929922136180838803, 6.92940427570655812640731061069, 8.379898543961470967191694971495, 9.355188181832179362346103161628, 10.51882698778784990220643195703, 10.90508481410394760093183518479

Graph of the $Z$-function along the critical line