L(s) = 1 | + 2·2-s + 2·4-s + 4·5-s + 7-s + 8·10-s − 6·11-s + 13-s + 2·14-s − 4·16-s + 17-s − 7·19-s + 8·20-s − 12·22-s + 4·23-s + 11·25-s + 2·26-s + 2·28-s + 6·29-s − 8·31-s − 8·32-s + 2·34-s + 4·35-s + 37-s − 14·38-s + 4·43-s − 12·44-s + 8·46-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + 1.78·5-s + 0.377·7-s + 2.52·10-s − 1.80·11-s + 0.277·13-s + 0.534·14-s − 16-s + 0.242·17-s − 1.60·19-s + 1.78·20-s − 2.55·22-s + 0.834·23-s + 11/5·25-s + 0.392·26-s + 0.377·28-s + 1.11·29-s − 1.43·31-s − 1.41·32-s + 0.342·34-s + 0.676·35-s + 0.164·37-s − 2.27·38-s + 0.609·43-s − 1.80·44-s + 1.17·46-s + ⋯ |
Λ(s)=(=(459s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(459s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.364460632 |
L(21) |
≈ |
3.364460632 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1−T |
good | 2 | 1−pT+pT2 |
| 5 | 1−4T+pT2 |
| 7 | 1−T+pT2 |
| 11 | 1+6T+pT2 |
| 13 | 1−T+pT2 |
| 19 | 1+7T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1−T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1+7T+pT2 |
| 67 | 1−T+pT2 |
| 71 | 1+4T+pT2 |
| 73 | 1−3T+pT2 |
| 79 | 1+9T+pT2 |
| 83 | 1−14T+pT2 |
| 89 | 1+14T+pT2 |
| 97 | 1+T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90508481410394760093183518479, −10.51882698778784990220643195703, −9.355188181832179362346103161628, −8.379898543961470967191694971495, −6.92940427570655812640731061069, −5.93408556270929922136180838803, −5.37713357577775960919289343412, −4.56441091173163015164546337868, −2.90936379528655043489992111903, −2.09364906131822284439528208110,
2.09364906131822284439528208110, 2.90936379528655043489992111903, 4.56441091173163015164546337868, 5.37713357577775960919289343412, 5.93408556270929922136180838803, 6.92940427570655812640731061069, 8.379898543961470967191694971495, 9.355188181832179362346103161628, 10.51882698778784990220643195703, 10.90508481410394760093183518479