Properties

Label 2-459-1.1-c1-0-21
Degree $2$
Conductor $459$
Sign $-1$
Analytic cond. $3.66513$
Root an. cond. $1.91445$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61·2-s + 0.618·4-s − 2.61·5-s − 4.85·7-s − 2.23·8-s − 4.23·10-s − 1.76·11-s + 3.23·13-s − 7.85·14-s − 4.85·16-s − 17-s + 3·19-s − 1.61·20-s − 2.85·22-s + 4.09·23-s + 1.85·25-s + 5.23·26-s − 3.00·28-s − 8.23·29-s + 4.23·31-s − 3.38·32-s − 1.61·34-s + 12.7·35-s + 0.472·37-s + 4.85·38-s + 5.85·40-s − 6.38·41-s + ⋯
L(s)  = 1  + 1.14·2-s + 0.309·4-s − 1.17·5-s − 1.83·7-s − 0.790·8-s − 1.33·10-s − 0.531·11-s + 0.897·13-s − 2.09·14-s − 1.21·16-s − 0.242·17-s + 0.688·19-s − 0.361·20-s − 0.608·22-s + 0.852·23-s + 0.370·25-s + 1.02·26-s − 0.566·28-s − 1.52·29-s + 0.760·31-s − 0.597·32-s − 0.277·34-s + 2.14·35-s + 0.0776·37-s + 0.787·38-s + 0.925·40-s − 0.996·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(459\)    =    \(3^{3} \cdot 17\)
Sign: $-1$
Analytic conductor: \(3.66513\)
Root analytic conductor: \(1.91445\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 459,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 + T \)
good2 \( 1 - 1.61T + 2T^{2} \)
5 \( 1 + 2.61T + 5T^{2} \)
7 \( 1 + 4.85T + 7T^{2} \)
11 \( 1 + 1.76T + 11T^{2} \)
13 \( 1 - 3.23T + 13T^{2} \)
19 \( 1 - 3T + 19T^{2} \)
23 \( 1 - 4.09T + 23T^{2} \)
29 \( 1 + 8.23T + 29T^{2} \)
31 \( 1 - 4.23T + 31T^{2} \)
37 \( 1 - 0.472T + 37T^{2} \)
41 \( 1 + 6.38T + 41T^{2} \)
43 \( 1 - 4.85T + 43T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
53 \( 1 + 10.3T + 53T^{2} \)
59 \( 1 + 4.09T + 59T^{2} \)
61 \( 1 + 14.0T + 61T^{2} \)
67 \( 1 + 3.14T + 67T^{2} \)
71 \( 1 - 1.76T + 71T^{2} \)
73 \( 1 + 11.4T + 73T^{2} \)
79 \( 1 - 1.85T + 79T^{2} \)
83 \( 1 - 15.4T + 83T^{2} \)
89 \( 1 + 6.32T + 89T^{2} \)
97 \( 1 - 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90348513533437078225182270530, −9.656793169128973856572005684850, −8.894011005100265104473870482758, −7.66985811191610761036146548009, −6.62670946638433761725637379426, −5.84613034863095469794746401520, −4.62583440749178726044275294502, −3.49921530746824352302871150473, −3.13945368839014386283856455216, 0, 3.13945368839014386283856455216, 3.49921530746824352302871150473, 4.62583440749178726044275294502, 5.84613034863095469794746401520, 6.62670946638433761725637379426, 7.66985811191610761036146548009, 8.894011005100265104473870482758, 9.656793169128973856572005684850, 10.90348513533437078225182270530

Graph of the $Z$-function along the critical line