L(s) = 1 | + 1.61·2-s + 0.618·4-s − 2.61·5-s − 4.85·7-s − 2.23·8-s − 4.23·10-s − 1.76·11-s + 3.23·13-s − 7.85·14-s − 4.85·16-s − 17-s + 3·19-s − 1.61·20-s − 2.85·22-s + 4.09·23-s + 1.85·25-s + 5.23·26-s − 3.00·28-s − 8.23·29-s + 4.23·31-s − 3.38·32-s − 1.61·34-s + 12.7·35-s + 0.472·37-s + 4.85·38-s + 5.85·40-s − 6.38·41-s + ⋯ |
L(s) = 1 | + 1.14·2-s + 0.309·4-s − 1.17·5-s − 1.83·7-s − 0.790·8-s − 1.33·10-s − 0.531·11-s + 0.897·13-s − 2.09·14-s − 1.21·16-s − 0.242·17-s + 0.688·19-s − 0.361·20-s − 0.608·22-s + 0.852·23-s + 0.370·25-s + 1.02·26-s − 0.566·28-s − 1.52·29-s + 0.760·31-s − 0.597·32-s − 0.277·34-s + 2.14·35-s + 0.0776·37-s + 0.787·38-s + 0.925·40-s − 0.996·41-s + ⋯ |
Λ(s)=(=(459s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(459s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1+T |
good | 2 | 1−1.61T+2T2 |
| 5 | 1+2.61T+5T2 |
| 7 | 1+4.85T+7T2 |
| 11 | 1+1.76T+11T2 |
| 13 | 1−3.23T+13T2 |
| 19 | 1−3T+19T2 |
| 23 | 1−4.09T+23T2 |
| 29 | 1+8.23T+29T2 |
| 31 | 1−4.23T+31T2 |
| 37 | 1−0.472T+37T2 |
| 41 | 1+6.38T+41T2 |
| 43 | 1−4.85T+43T2 |
| 47 | 1+11.3T+47T2 |
| 53 | 1+10.3T+53T2 |
| 59 | 1+4.09T+59T2 |
| 61 | 1+14.0T+61T2 |
| 67 | 1+3.14T+67T2 |
| 71 | 1−1.76T+71T2 |
| 73 | 1+11.4T+73T2 |
| 79 | 1−1.85T+79T2 |
| 83 | 1−15.4T+83T2 |
| 89 | 1+6.32T+89T2 |
| 97 | 1−12.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90348513533437078225182270530, −9.656793169128973856572005684850, −8.894011005100265104473870482758, −7.66985811191610761036146548009, −6.62670946638433761725637379426, −5.84613034863095469794746401520, −4.62583440749178726044275294502, −3.49921530746824352302871150473, −3.13945368839014386283856455216, 0,
3.13945368839014386283856455216, 3.49921530746824352302871150473, 4.62583440749178726044275294502, 5.84613034863095469794746401520, 6.62670946638433761725637379426, 7.66985811191610761036146548009, 8.894011005100265104473870482758, 9.656793169128973856572005684850, 10.90348513533437078225182270530