Properties

Label 2-46-23.19-c2-0-0
Degree $2$
Conductor $46$
Sign $-0.774 - 0.632i$
Analytic cond. $1.25340$
Root an. cond. $1.11955$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.587 − 1.28i)2-s + (−4.52 + 1.33i)3-s + (−1.30 + 1.51i)4-s + (−1.16 + 1.81i)5-s + (4.37 + 5.04i)6-s + (−10.6 + 1.53i)7-s + (2.71 + 0.796i)8-s + (11.1 − 7.18i)9-s + (3.02 + 0.434i)10-s + (1.02 + 0.468i)11-s + (3.92 − 8.58i)12-s + (2.02 − 14.1i)13-s + (8.22 + 12.8i)14-s + (2.87 − 9.78i)15-s + (−0.569 − 3.95i)16-s + (−21.2 + 18.3i)17-s + ⋯
L(s)  = 1  + (−0.293 − 0.643i)2-s + (−1.50 + 0.443i)3-s + (−0.327 + 0.377i)4-s + (−0.233 + 0.363i)5-s + (0.728 + 0.840i)6-s + (−1.52 + 0.218i)7-s + (0.339 + 0.0996i)8-s + (1.24 − 0.798i)9-s + (0.302 + 0.0434i)10-s + (0.0932 + 0.0425i)11-s + (0.326 − 0.715i)12-s + (0.155 − 1.08i)13-s + (0.587 + 0.914i)14-s + (0.191 − 0.652i)15-s + (−0.0355 − 0.247i)16-s + (−1.24 + 1.08i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.774 - 0.632i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(46\)    =    \(2 \cdot 23\)
Sign: $-0.774 - 0.632i$
Analytic conductor: \(1.25340\)
Root analytic conductor: \(1.11955\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{46} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 46,\ (\ :1),\ -0.774 - 0.632i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0425403 + 0.119329i\)
\(L(\frac12)\) \(\approx\) \(0.0425403 + 0.119329i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.587 + 1.28i)T \)
23 \( 1 + (-3.63 - 22.7i)T \)
good3 \( 1 + (4.52 - 1.33i)T + (7.57 - 4.86i)T^{2} \)
5 \( 1 + (1.16 - 1.81i)T + (-10.3 - 22.7i)T^{2} \)
7 \( 1 + (10.6 - 1.53i)T + (47.0 - 13.8i)T^{2} \)
11 \( 1 + (-1.02 - 0.468i)T + (79.2 + 91.4i)T^{2} \)
13 \( 1 + (-2.02 + 14.1i)T + (-162. - 47.6i)T^{2} \)
17 \( 1 + (21.2 - 18.3i)T + (41.1 - 286. i)T^{2} \)
19 \( 1 + (2.49 + 2.16i)T + (51.3 + 357. i)T^{2} \)
29 \( 1 + (-25.8 - 29.8i)T + (-119. + 832. i)T^{2} \)
31 \( 1 + (47.2 + 13.8i)T + (808. + 519. i)T^{2} \)
37 \( 1 + (34.2 + 53.2i)T + (-568. + 1.24e3i)T^{2} \)
41 \( 1 + (36.7 + 23.6i)T + (698. + 1.52e3i)T^{2} \)
43 \( 1 + (-4.62 - 15.7i)T + (-1.55e3 + 9.99e2i)T^{2} \)
47 \( 1 - 25.6T + 2.20e3T^{2} \)
53 \( 1 + (26.9 - 3.87i)T + (2.69e3 - 791. i)T^{2} \)
59 \( 1 + (-0.462 + 3.21i)T + (-3.33e3 - 980. i)T^{2} \)
61 \( 1 + (7.17 - 24.4i)T + (-3.13e3 - 2.01e3i)T^{2} \)
67 \( 1 + (-8.81 + 4.02i)T + (2.93e3 - 3.39e3i)T^{2} \)
71 \( 1 + (-1.52 - 3.34i)T + (-3.30e3 + 3.80e3i)T^{2} \)
73 \( 1 + (25.2 - 29.1i)T + (-758. - 5.27e3i)T^{2} \)
79 \( 1 + (-23.8 - 3.43i)T + (5.98e3 + 1.75e3i)T^{2} \)
83 \( 1 + (-5.25 - 8.17i)T + (-2.86e3 + 6.26e3i)T^{2} \)
89 \( 1 + (-21.5 - 73.4i)T + (-6.66e3 + 4.28e3i)T^{2} \)
97 \( 1 + (67.3 - 104. i)T + (-3.90e3 - 8.55e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.11333692733018417830523545555, −15.32348219344667355554968240202, −13.06693843645966884350544469566, −12.39848550303588880569336960178, −11.01011496220594646640120463363, −10.44526935470166361950875192902, −9.135321586474494034639197924317, −6.88190034789161751802215818145, −5.58618698193511397720861842732, −3.60242851711535271545962559693, 0.16898266911048116385231458294, 4.68665466147351373175284090712, 6.40881819288544772031991270027, 6.85101723908890240965059314629, 8.956586110153737813811765357199, 10.30759154955356241633142366604, 11.65543261090613029005475456752, 12.69636815451027039387314563173, 13.76247720245703593153225411410, 15.75973717528270225388646598798

Graph of the $Z$-function along the critical line