Properties

Label 2-46-23.8-c1-0-0
Degree $2$
Conductor $46$
Sign $0.506 - 0.862i$
Analytic cond. $0.367311$
Root an. cond. $0.606062$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.142 + 0.989i)2-s + (0.580 + 1.27i)3-s + (−0.959 − 0.281i)4-s + (−1.66 − 1.92i)5-s + (−1.34 + 0.393i)6-s + (1.75 + 1.12i)7-s + (0.415 − 0.909i)8-s + (0.684 − 0.790i)9-s + (2.14 − 1.37i)10-s + (−0.543 − 3.77i)11-s + (−0.198 − 1.38i)12-s + (−5.21 + 3.34i)13-s + (−1.36 + 1.57i)14-s + (1.47 − 3.23i)15-s + (0.841 + 0.540i)16-s + (−1.24 + 0.366i)17-s + ⋯
L(s)  = 1  + (−0.100 + 0.699i)2-s + (0.335 + 0.734i)3-s + (−0.479 − 0.140i)4-s + (−0.745 − 0.860i)5-s + (−0.547 + 0.160i)6-s + (0.663 + 0.426i)7-s + (0.146 − 0.321i)8-s + (0.228 − 0.263i)9-s + (0.677 − 0.435i)10-s + (−0.163 − 1.13i)11-s + (−0.0574 − 0.399i)12-s + (−1.44 + 0.929i)13-s + (−0.365 + 0.421i)14-s + (0.381 − 0.835i)15-s + (0.210 + 0.135i)16-s + (−0.303 + 0.0890i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.506 - 0.862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.506 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(46\)    =    \(2 \cdot 23\)
Sign: $0.506 - 0.862i$
Analytic conductor: \(0.367311\)
Root analytic conductor: \(0.606062\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{46} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 46,\ (\ :1/2),\ 0.506 - 0.862i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.668509 + 0.382826i\)
\(L(\frac12)\) \(\approx\) \(0.668509 + 0.382826i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.142 - 0.989i)T \)
23 \( 1 + (1.33 - 4.60i)T \)
good3 \( 1 + (-0.580 - 1.27i)T + (-1.96 + 2.26i)T^{2} \)
5 \( 1 + (1.66 + 1.92i)T + (-0.711 + 4.94i)T^{2} \)
7 \( 1 + (-1.75 - 1.12i)T + (2.90 + 6.36i)T^{2} \)
11 \( 1 + (0.543 + 3.77i)T + (-10.5 + 3.09i)T^{2} \)
13 \( 1 + (5.21 - 3.34i)T + (5.40 - 11.8i)T^{2} \)
17 \( 1 + (1.24 - 0.366i)T + (14.3 - 9.19i)T^{2} \)
19 \( 1 + (-2.37 - 0.698i)T + (15.9 + 10.2i)T^{2} \)
29 \( 1 + (6.87 - 2.01i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (1.67 - 3.65i)T + (-20.3 - 23.4i)T^{2} \)
37 \( 1 + (-7.48 + 8.63i)T + (-5.26 - 36.6i)T^{2} \)
41 \( 1 + (-2.81 - 3.24i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (1.15 + 2.52i)T + (-28.1 + 32.4i)T^{2} \)
47 \( 1 - 9.34T + 47T^{2} \)
53 \( 1 + (1.99 + 1.27i)T + (22.0 + 48.2i)T^{2} \)
59 \( 1 + (-0.514 + 0.330i)T + (24.5 - 53.6i)T^{2} \)
61 \( 1 + (-1.67 + 3.67i)T + (-39.9 - 46.1i)T^{2} \)
67 \( 1 + (1.82 - 12.6i)T + (-64.2 - 18.8i)T^{2} \)
71 \( 1 + (-0.940 + 6.54i)T + (-68.1 - 20.0i)T^{2} \)
73 \( 1 + (-2.80 - 0.824i)T + (61.4 + 39.4i)T^{2} \)
79 \( 1 + (1.58 - 1.02i)T + (32.8 - 71.8i)T^{2} \)
83 \( 1 + (6.83 - 7.89i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (-2.08 - 4.55i)T + (-58.2 + 67.2i)T^{2} \)
97 \( 1 + (8.21 + 9.48i)T + (-13.8 + 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.04535673610070360060680294749, −15.03806662565438958977523987330, −14.15264585062825555728467398378, −12.54079964726810714206406789030, −11.36004832073772459032465251426, −9.530305067490471344754983000681, −8.708304233574818071068039011735, −7.46955517919775576286674280241, −5.33374133263460441930161068605, −4.08648914218362542358378138902, 2.48180479336225520740870720323, 4.57577390071581444356933083800, 7.35304497069647927033949670993, 7.77864993695923013683794438563, 9.873421459610842650088191849862, 10.94999868662902427227811004453, 12.15435048058490674856239774954, 13.12440588978270356086932604608, 14.46922706635351300059453396917, 15.23793817603968364341350811752

Graph of the $Z$-function along the critical line