Properties

Label 2-4600-1.1-c1-0-17
Degree $2$
Conductor $4600$
Sign $1$
Analytic cond. $36.7311$
Root an. cond. $6.06062$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.20·3-s − 4.54·7-s + 7.29·9-s + 4.59·11-s + 5.17·13-s + 3.33·17-s − 4.43·19-s + 14.5·21-s + 23-s − 13.8·27-s + 4.13·29-s + 7.82·31-s − 14.7·33-s − 1.03·37-s − 16.6·39-s − 5.75·41-s + 1.67·43-s + 6.20·47-s + 13.6·49-s − 10.7·51-s − 7.35·53-s + 14.2·57-s + 1.83·59-s + 0.524·61-s − 33.1·63-s − 2.55·67-s − 3.20·69-s + ⋯
L(s)  = 1  − 1.85·3-s − 1.71·7-s + 2.43·9-s + 1.38·11-s + 1.43·13-s + 0.809·17-s − 1.01·19-s + 3.18·21-s + 0.208·23-s − 2.65·27-s + 0.766·29-s + 1.40·31-s − 2.56·33-s − 0.169·37-s − 2.66·39-s − 0.899·41-s + 0.255·43-s + 0.904·47-s + 1.95·49-s − 1.50·51-s − 1.00·53-s + 1.88·57-s + 0.239·59-s + 0.0671·61-s − 4.18·63-s − 0.312·67-s − 0.386·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4600\)    =    \(2^{3} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(36.7311\)
Root analytic conductor: \(6.06062\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8732155027\)
\(L(\frac12)\) \(\approx\) \(0.8732155027\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + 3.20T + 3T^{2} \)
7 \( 1 + 4.54T + 7T^{2} \)
11 \( 1 - 4.59T + 11T^{2} \)
13 \( 1 - 5.17T + 13T^{2} \)
17 \( 1 - 3.33T + 17T^{2} \)
19 \( 1 + 4.43T + 19T^{2} \)
29 \( 1 - 4.13T + 29T^{2} \)
31 \( 1 - 7.82T + 31T^{2} \)
37 \( 1 + 1.03T + 37T^{2} \)
41 \( 1 + 5.75T + 41T^{2} \)
43 \( 1 - 1.67T + 43T^{2} \)
47 \( 1 - 6.20T + 47T^{2} \)
53 \( 1 + 7.35T + 53T^{2} \)
59 \( 1 - 1.83T + 59T^{2} \)
61 \( 1 - 0.524T + 61T^{2} \)
67 \( 1 + 2.55T + 67T^{2} \)
71 \( 1 + 6.58T + 71T^{2} \)
73 \( 1 + 2.41T + 73T^{2} \)
79 \( 1 + 9.85T + 79T^{2} \)
83 \( 1 + 10.7T + 83T^{2} \)
89 \( 1 - 5.13T + 89T^{2} \)
97 \( 1 + 3.36T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.416094578261003332584535626727, −7.07795087026910177865457609475, −6.63400208569382515480483760207, −6.09397561488029189340610081465, −5.82021740383290124275276931028, −4.56794058351081821709355875114, −3.95085420612551419694515831169, −3.14775332870361375037803030200, −1.42708999805378117871070638944, −0.63256133730369485597925923204, 0.63256133730369485597925923204, 1.42708999805378117871070638944, 3.14775332870361375037803030200, 3.95085420612551419694515831169, 4.56794058351081821709355875114, 5.82021740383290124275276931028, 6.09397561488029189340610081465, 6.63400208569382515480483760207, 7.07795087026910177865457609475, 8.416094578261003332584535626727

Graph of the $Z$-function along the critical line