L(s) = 1 | − 2.54·3-s − 0.780·7-s + 3.45·9-s + 5.16·11-s − 3.34·13-s + 6.62·17-s + 6.40·19-s + 1.98·21-s − 23-s − 1.15·27-s − 0.0877·29-s + 3.29·31-s − 13.1·33-s + 4.68·37-s + 8.50·39-s − 5.75·41-s − 2.62·43-s − 5.13·47-s − 6.39·49-s − 16.8·51-s − 8.80·53-s − 16.2·57-s + 2.98·59-s − 2.05·61-s − 2.69·63-s + 3.60·67-s + 2.54·69-s + ⋯ |
L(s) = 1 | − 1.46·3-s − 0.295·7-s + 1.15·9-s + 1.55·11-s − 0.928·13-s + 1.60·17-s + 1.47·19-s + 0.432·21-s − 0.208·23-s − 0.223·27-s − 0.0162·29-s + 0.591·31-s − 2.28·33-s + 0.769·37-s + 1.36·39-s − 0.899·41-s − 0.400·43-s − 0.748·47-s − 0.912·49-s − 2.35·51-s − 1.20·53-s − 2.15·57-s + 0.388·59-s − 0.263·61-s − 0.339·63-s + 0.440·67-s + 0.305·69-s + ⋯ |
Λ(s)=(=(4600s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4600s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.198424929 |
L(21) |
≈ |
1.198424929 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1+T |
good | 3 | 1+2.54T+3T2 |
| 7 | 1+0.780T+7T2 |
| 11 | 1−5.16T+11T2 |
| 13 | 1+3.34T+13T2 |
| 17 | 1−6.62T+17T2 |
| 19 | 1−6.40T+19T2 |
| 29 | 1+0.0877T+29T2 |
| 31 | 1−3.29T+31T2 |
| 37 | 1−4.68T+37T2 |
| 41 | 1+5.75T+41T2 |
| 43 | 1+2.62T+43T2 |
| 47 | 1+5.13T+47T2 |
| 53 | 1+8.80T+53T2 |
| 59 | 1−2.98T+59T2 |
| 61 | 1+2.05T+61T2 |
| 67 | 1−3.60T+67T2 |
| 71 | 1−11.5T+71T2 |
| 73 | 1−10.4T+73T2 |
| 79 | 1−3.43T+79T2 |
| 83 | 1+3.62T+83T2 |
| 89 | 1−14.3T+89T2 |
| 97 | 1−0.427T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.129457702731393416396594879117, −7.45552843160800443399563019391, −6.58875436385154915911588270858, −6.26952816259784275514031713392, −5.27446112674846903234980429007, −4.94812252217822525324622749802, −3.83312049319569116926907133026, −3.07226877912482856153884325216, −1.52089358559558806857771082624, −0.71483432997993236563125489025,
0.71483432997993236563125489025, 1.52089358559558806857771082624, 3.07226877912482856153884325216, 3.83312049319569116926907133026, 4.94812252217822525324622749802, 5.27446112674846903234980429007, 6.26952816259784275514031713392, 6.58875436385154915911588270858, 7.45552843160800443399563019391, 8.129457702731393416396594879117