Properties

Label 2-4600-1.1-c1-0-23
Degree $2$
Conductor $4600$
Sign $1$
Analytic cond. $36.7311$
Root an. cond. $6.06062$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.54·3-s − 0.780·7-s + 3.45·9-s + 5.16·11-s − 3.34·13-s + 6.62·17-s + 6.40·19-s + 1.98·21-s − 23-s − 1.15·27-s − 0.0877·29-s + 3.29·31-s − 13.1·33-s + 4.68·37-s + 8.50·39-s − 5.75·41-s − 2.62·43-s − 5.13·47-s − 6.39·49-s − 16.8·51-s − 8.80·53-s − 16.2·57-s + 2.98·59-s − 2.05·61-s − 2.69·63-s + 3.60·67-s + 2.54·69-s + ⋯
L(s)  = 1  − 1.46·3-s − 0.295·7-s + 1.15·9-s + 1.55·11-s − 0.928·13-s + 1.60·17-s + 1.47·19-s + 0.432·21-s − 0.208·23-s − 0.223·27-s − 0.0162·29-s + 0.591·31-s − 2.28·33-s + 0.769·37-s + 1.36·39-s − 0.899·41-s − 0.400·43-s − 0.748·47-s − 0.912·49-s − 2.35·51-s − 1.20·53-s − 2.15·57-s + 0.388·59-s − 0.263·61-s − 0.339·63-s + 0.440·67-s + 0.305·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4600\)    =    \(2^{3} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(36.7311\)
Root analytic conductor: \(6.06062\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.198424929\)
\(L(\frac12)\) \(\approx\) \(1.198424929\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 2.54T + 3T^{2} \)
7 \( 1 + 0.780T + 7T^{2} \)
11 \( 1 - 5.16T + 11T^{2} \)
13 \( 1 + 3.34T + 13T^{2} \)
17 \( 1 - 6.62T + 17T^{2} \)
19 \( 1 - 6.40T + 19T^{2} \)
29 \( 1 + 0.0877T + 29T^{2} \)
31 \( 1 - 3.29T + 31T^{2} \)
37 \( 1 - 4.68T + 37T^{2} \)
41 \( 1 + 5.75T + 41T^{2} \)
43 \( 1 + 2.62T + 43T^{2} \)
47 \( 1 + 5.13T + 47T^{2} \)
53 \( 1 + 8.80T + 53T^{2} \)
59 \( 1 - 2.98T + 59T^{2} \)
61 \( 1 + 2.05T + 61T^{2} \)
67 \( 1 - 3.60T + 67T^{2} \)
71 \( 1 - 11.5T + 71T^{2} \)
73 \( 1 - 10.4T + 73T^{2} \)
79 \( 1 - 3.43T + 79T^{2} \)
83 \( 1 + 3.62T + 83T^{2} \)
89 \( 1 - 14.3T + 89T^{2} \)
97 \( 1 - 0.427T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.129457702731393416396594879117, −7.45552843160800443399563019391, −6.58875436385154915911588270858, −6.26952816259784275514031713392, −5.27446112674846903234980429007, −4.94812252217822525324622749802, −3.83312049319569116926907133026, −3.07226877912482856153884325216, −1.52089358559558806857771082624, −0.71483432997993236563125489025, 0.71483432997993236563125489025, 1.52089358559558806857771082624, 3.07226877912482856153884325216, 3.83312049319569116926907133026, 4.94812252217822525324622749802, 5.27446112674846903234980429007, 6.26952816259784275514031713392, 6.58875436385154915911588270858, 7.45552843160800443399563019391, 8.129457702731393416396594879117

Graph of the $Z$-function along the critical line