L(s) = 1 | − 0.801·3-s − 1.60·7-s − 2.35·9-s − 6.09·11-s − 1.35·13-s − 1.60·17-s + 1.78·19-s + 1.28·21-s − 23-s + 4.29·27-s − 4.82·29-s + 6.15·31-s + 4.89·33-s − 9.87·37-s + 1.08·39-s − 8.89·41-s − 11.3·43-s + 9.85·47-s − 4.42·49-s + 1.28·51-s + 9.20·53-s − 1.42·57-s − 7.27·59-s + 0.933·61-s + 3.78·63-s + 9.42·67-s + 0.801·69-s + ⋯ |
L(s) = 1 | − 0.462·3-s − 0.606·7-s − 0.785·9-s − 1.83·11-s − 0.376·13-s − 0.388·17-s + 0.408·19-s + 0.280·21-s − 0.208·23-s + 0.826·27-s − 0.896·29-s + 1.10·31-s + 0.851·33-s − 1.62·37-s + 0.174·39-s − 1.38·41-s − 1.73·43-s + 1.43·47-s − 0.632·49-s + 0.180·51-s + 1.26·53-s − 0.189·57-s − 0.947·59-s + 0.119·61-s + 0.476·63-s + 1.15·67-s + 0.0965·69-s + ⋯ |
Λ(s)=(=(4600s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4600s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5000239931 |
L(21) |
≈ |
0.5000239931 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1+T |
good | 3 | 1+0.801T+3T2 |
| 7 | 1+1.60T+7T2 |
| 11 | 1+6.09T+11T2 |
| 13 | 1+1.35T+13T2 |
| 17 | 1+1.60T+17T2 |
| 19 | 1−1.78T+19T2 |
| 29 | 1+4.82T+29T2 |
| 31 | 1−6.15T+31T2 |
| 37 | 1+9.87T+37T2 |
| 41 | 1+8.89T+41T2 |
| 43 | 1+11.3T+43T2 |
| 47 | 1−9.85T+47T2 |
| 53 | 1−9.20T+53T2 |
| 59 | 1+7.27T+59T2 |
| 61 | 1−0.933T+61T2 |
| 67 | 1−9.42T+67T2 |
| 71 | 1−12.6T+71T2 |
| 73 | 1+2.60T+73T2 |
| 79 | 1+5.16T+79T2 |
| 83 | 1−15.4T+83T2 |
| 89 | 1+15.7T+89T2 |
| 97 | 1−12.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.336766510640660917209872405795, −7.58780996156104476696554756543, −6.82410777421114822804931027757, −6.09977662577905792800304337577, −5.16508678551875178399171338200, −5.05831940585531226117667534419, −3.61740725387602433086897239574, −2.89399246098083307640500674180, −2.08547375876196695026451774694, −0.37328064475887228071451918765,
0.37328064475887228071451918765, 2.08547375876196695026451774694, 2.89399246098083307640500674180, 3.61740725387602433086897239574, 5.05831940585531226117667534419, 5.16508678551875178399171338200, 6.09977662577905792800304337577, 6.82410777421114822804931027757, 7.58780996156104476696554756543, 8.336766510640660917209872405795