Properties

Label 2-4600-1.1-c1-0-3
Degree $2$
Conductor $4600$
Sign $1$
Analytic cond. $36.7311$
Root an. cond. $6.06062$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.801·3-s − 1.60·7-s − 2.35·9-s − 6.09·11-s − 1.35·13-s − 1.60·17-s + 1.78·19-s + 1.28·21-s − 23-s + 4.29·27-s − 4.82·29-s + 6.15·31-s + 4.89·33-s − 9.87·37-s + 1.08·39-s − 8.89·41-s − 11.3·43-s + 9.85·47-s − 4.42·49-s + 1.28·51-s + 9.20·53-s − 1.42·57-s − 7.27·59-s + 0.933·61-s + 3.78·63-s + 9.42·67-s + 0.801·69-s + ⋯
L(s)  = 1  − 0.462·3-s − 0.606·7-s − 0.785·9-s − 1.83·11-s − 0.376·13-s − 0.388·17-s + 0.408·19-s + 0.280·21-s − 0.208·23-s + 0.826·27-s − 0.896·29-s + 1.10·31-s + 0.851·33-s − 1.62·37-s + 0.174·39-s − 1.38·41-s − 1.73·43-s + 1.43·47-s − 0.632·49-s + 0.180·51-s + 1.26·53-s − 0.189·57-s − 0.947·59-s + 0.119·61-s + 0.476·63-s + 1.15·67-s + 0.0965·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4600\)    =    \(2^{3} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(36.7311\)
Root analytic conductor: \(6.06062\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5000239931\)
\(L(\frac12)\) \(\approx\) \(0.5000239931\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 0.801T + 3T^{2} \)
7 \( 1 + 1.60T + 7T^{2} \)
11 \( 1 + 6.09T + 11T^{2} \)
13 \( 1 + 1.35T + 13T^{2} \)
17 \( 1 + 1.60T + 17T^{2} \)
19 \( 1 - 1.78T + 19T^{2} \)
29 \( 1 + 4.82T + 29T^{2} \)
31 \( 1 - 6.15T + 31T^{2} \)
37 \( 1 + 9.87T + 37T^{2} \)
41 \( 1 + 8.89T + 41T^{2} \)
43 \( 1 + 11.3T + 43T^{2} \)
47 \( 1 - 9.85T + 47T^{2} \)
53 \( 1 - 9.20T + 53T^{2} \)
59 \( 1 + 7.27T + 59T^{2} \)
61 \( 1 - 0.933T + 61T^{2} \)
67 \( 1 - 9.42T + 67T^{2} \)
71 \( 1 - 12.6T + 71T^{2} \)
73 \( 1 + 2.60T + 73T^{2} \)
79 \( 1 + 5.16T + 79T^{2} \)
83 \( 1 - 15.4T + 83T^{2} \)
89 \( 1 + 15.7T + 89T^{2} \)
97 \( 1 - 12.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.336766510640660917209872405795, −7.58780996156104476696554756543, −6.82410777421114822804931027757, −6.09977662577905792800304337577, −5.16508678551875178399171338200, −5.05831940585531226117667534419, −3.61740725387602433086897239574, −2.89399246098083307640500674180, −2.08547375876196695026451774694, −0.37328064475887228071451918765, 0.37328064475887228071451918765, 2.08547375876196695026451774694, 2.89399246098083307640500674180, 3.61740725387602433086897239574, 5.05831940585531226117667534419, 5.16508678551875178399171338200, 6.09977662577905792800304337577, 6.82410777421114822804931027757, 7.58780996156104476696554756543, 8.336766510640660917209872405795

Graph of the $Z$-function along the critical line