L(s) = 1 | − 1.78·3-s − 1.75·7-s + 0.192·9-s − 4.77·11-s − 1.72·13-s + 7.81·17-s − 2.43·19-s + 3.13·21-s + 23-s + 5.01·27-s + 7.86·29-s + 6.14·31-s + 8.53·33-s + 6.83·37-s + 3.09·39-s − 2.50·41-s + 3.26·43-s − 8.46·47-s − 3.91·49-s − 13.9·51-s + 2.76·53-s + 4.35·57-s + 1.91·59-s − 3.50·61-s − 0.337·63-s + 12.7·67-s − 1.78·69-s + ⋯ |
L(s) = 1 | − 1.03·3-s − 0.663·7-s + 0.0640·9-s − 1.43·11-s − 0.479·13-s + 1.89·17-s − 0.559·19-s + 0.684·21-s + 0.208·23-s + 0.965·27-s + 1.46·29-s + 1.10·31-s + 1.48·33-s + 1.12·37-s + 0.494·39-s − 0.391·41-s + 0.498·43-s − 1.23·47-s − 0.559·49-s − 1.95·51-s + 0.379·53-s + 0.577·57-s + 0.249·59-s − 0.448·61-s − 0.0424·63-s + 1.55·67-s − 0.215·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 + 1.78T + 3T^{2} \) |
| 7 | \( 1 + 1.75T + 7T^{2} \) |
| 11 | \( 1 + 4.77T + 11T^{2} \) |
| 13 | \( 1 + 1.72T + 13T^{2} \) |
| 17 | \( 1 - 7.81T + 17T^{2} \) |
| 19 | \( 1 + 2.43T + 19T^{2} \) |
| 29 | \( 1 - 7.86T + 29T^{2} \) |
| 31 | \( 1 - 6.14T + 31T^{2} \) |
| 37 | \( 1 - 6.83T + 37T^{2} \) |
| 41 | \( 1 + 2.50T + 41T^{2} \) |
| 43 | \( 1 - 3.26T + 43T^{2} \) |
| 47 | \( 1 + 8.46T + 47T^{2} \) |
| 53 | \( 1 - 2.76T + 53T^{2} \) |
| 59 | \( 1 - 1.91T + 59T^{2} \) |
| 61 | \( 1 + 3.50T + 61T^{2} \) |
| 67 | \( 1 - 12.7T + 67T^{2} \) |
| 71 | \( 1 + 13.3T + 71T^{2} \) |
| 73 | \( 1 + 0.0111T + 73T^{2} \) |
| 79 | \( 1 + 16.6T + 79T^{2} \) |
| 83 | \( 1 - 2.64T + 83T^{2} \) |
| 89 | \( 1 + 13.1T + 89T^{2} \) |
| 97 | \( 1 + 15.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.001104239226936589353669763652, −7.13556071001258306351585766680, −6.35174500800127661412452151362, −5.75355989184073701771855582160, −5.12681855701928224377247406110, −4.46259266896788335813175768766, −3.11527968560304055457293879070, −2.67019427601249981273358556028, −1.04469740306387750651871938139, 0,
1.04469740306387750651871938139, 2.67019427601249981273358556028, 3.11527968560304055457293879070, 4.46259266896788335813175768766, 5.12681855701928224377247406110, 5.75355989184073701771855582160, 6.35174500800127661412452151362, 7.13556071001258306351585766680, 8.001104239226936589353669763652