L(s) = 1 | + (1 − i)5-s + 4i·7-s + (4 − 4i)11-s + (3 + 3i)13-s + 6·17-s + (4 + 4i)19-s − 8i·23-s + 3i·25-s + (3 + 3i)29-s − 4·31-s + (4 + 4i)35-s + (1 − i)37-s − 2i·41-s + (4 − 4i)43-s − 8·47-s + ⋯ |
L(s) = 1 | + (0.447 − 0.447i)5-s + 1.51i·7-s + (1.20 − 1.20i)11-s + (0.832 + 0.832i)13-s + 1.45·17-s + (0.917 + 0.917i)19-s − 1.66i·23-s + 0.600i·25-s + (0.557 + 0.557i)29-s − 0.718·31-s + (0.676 + 0.676i)35-s + (0.164 − 0.164i)37-s − 0.312i·41-s + (0.609 − 0.609i)43-s − 1.16·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 - 0.382i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.695790635\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.695790635\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1 + i)T - 5iT^{2} \) |
| 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 + (-4 + 4i)T - 11iT^{2} \) |
| 13 | \( 1 + (-3 - 3i)T + 13iT^{2} \) |
| 17 | \( 1 - 6T + 17T^{2} \) |
| 19 | \( 1 + (-4 - 4i)T + 19iT^{2} \) |
| 23 | \( 1 + 8iT - 23T^{2} \) |
| 29 | \( 1 + (-3 - 3i)T + 29iT^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (-1 + i)T - 37iT^{2} \) |
| 41 | \( 1 + 2iT - 41T^{2} \) |
| 43 | \( 1 + (-4 + 4i)T - 43iT^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 + (7 - 7i)T - 53iT^{2} \) |
| 59 | \( 1 - 59iT^{2} \) |
| 61 | \( 1 + (3 + 3i)T + 61iT^{2} \) |
| 67 | \( 1 + (8 + 8i)T + 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 10iT - 73T^{2} \) |
| 79 | \( 1 - 12T + 79T^{2} \) |
| 83 | \( 1 + (4 + 4i)T + 83iT^{2} \) |
| 89 | \( 1 + 16iT - 89T^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.569028267117341858163542905323, −7.84732912415814948894030486778, −6.67591611004168398158490410375, −5.94037993955020654453763340136, −5.71903883616252366042777508005, −4.78481354215264691044535901634, −3.63586968003585771744139013649, −3.08088799824196311276220267706, −1.81042524086582731211086656721, −1.10069760573670121670120322937,
0.955233362683064482232371904822, 1.58221874533219103996538297112, 3.07601062391924803363290300885, 3.64492984390797301479360053883, 4.45528343281635513792574067847, 5.33720277596916778165013425701, 6.23393742597915424383474765373, 6.87265703637919469004909322905, 7.56036711427846394512089693224, 7.947885281363358547833914804977