L(s) = 1 | + (1 − i)5-s + 4i·7-s + (4 − 4i)11-s + (3 + 3i)13-s + 6·17-s + (4 + 4i)19-s − 8i·23-s + 3i·25-s + (3 + 3i)29-s − 4·31-s + (4 + 4i)35-s + (1 − i)37-s − 2i·41-s + (4 − 4i)43-s − 8·47-s + ⋯ |
L(s) = 1 | + (0.447 − 0.447i)5-s + 1.51i·7-s + (1.20 − 1.20i)11-s + (0.832 + 0.832i)13-s + 1.45·17-s + (0.917 + 0.917i)19-s − 1.66i·23-s + 0.600i·25-s + (0.557 + 0.557i)29-s − 0.718·31-s + (0.676 + 0.676i)35-s + (0.164 − 0.164i)37-s − 0.312i·41-s + (0.609 − 0.609i)43-s − 1.16·47-s + ⋯ |
Λ(s)=(=(4608s/2ΓC(s)L(s)(0.923−0.382i)Λ(2−s)
Λ(s)=(=(4608s/2ΓC(s+1/2)L(s)(0.923−0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
4608
= 29⋅32
|
Sign: |
0.923−0.382i
|
Analytic conductor: |
36.7950 |
Root analytic conductor: |
6.06589 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4608(1153,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4608, ( :1/2), 0.923−0.382i)
|
Particular Values
L(1) |
≈ |
2.695790635 |
L(21) |
≈ |
2.695790635 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(−1+i)T−5iT2 |
| 7 | 1−4iT−7T2 |
| 11 | 1+(−4+4i)T−11iT2 |
| 13 | 1+(−3−3i)T+13iT2 |
| 17 | 1−6T+17T2 |
| 19 | 1+(−4−4i)T+19iT2 |
| 23 | 1+8iT−23T2 |
| 29 | 1+(−3−3i)T+29iT2 |
| 31 | 1+4T+31T2 |
| 37 | 1+(−1+i)T−37iT2 |
| 41 | 1+2iT−41T2 |
| 43 | 1+(−4+4i)T−43iT2 |
| 47 | 1+8T+47T2 |
| 53 | 1+(7−7i)T−53iT2 |
| 59 | 1−59iT2 |
| 61 | 1+(3+3i)T+61iT2 |
| 67 | 1+(8+8i)T+67iT2 |
| 71 | 1−71T2 |
| 73 | 1−10iT−73T2 |
| 79 | 1−12T+79T2 |
| 83 | 1+(4+4i)T+83iT2 |
| 89 | 1+16iT−89T2 |
| 97 | 1−8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.569028267117341858163542905323, −7.84732912415814948894030486778, −6.67591611004168398158490410375, −5.94037993955020654453763340136, −5.71903883616252366042777508005, −4.78481354215264691044535901634, −3.63586968003585771744139013649, −3.08088799824196311276220267706, −1.81042524086582731211086656721, −1.10069760573670121670120322937,
0.955233362683064482232371904822, 1.58221874533219103996538297112, 3.07601062391924803363290300885, 3.64492984390797301479360053883, 4.45528343281635513792574067847, 5.33720277596916778165013425701, 6.23393742597915424383474765373, 6.87265703637919469004909322905, 7.56036711427846394512089693224, 7.947885281363358547833914804977