Properties

Label 2-460e2-1.1-c1-0-103
Degree $2$
Conductor $211600$
Sign $-1$
Analytic cond. $1689.63$
Root an. cond. $41.1051$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 4·7-s + 6·9-s − 3·11-s + 6·13-s − 2·17-s − 19-s + 12·21-s + 9·27-s − 2·29-s − 10·31-s − 9·33-s − 8·37-s + 18·39-s + 5·41-s − 11·43-s + 2·47-s + 9·49-s − 6·51-s + 12·53-s − 3·57-s − 13·59-s + 8·61-s + 24·63-s + 3·67-s − 10·71-s + 2·73-s + ⋯
L(s)  = 1  + 1.73·3-s + 1.51·7-s + 2·9-s − 0.904·11-s + 1.66·13-s − 0.485·17-s − 0.229·19-s + 2.61·21-s + 1.73·27-s − 0.371·29-s − 1.79·31-s − 1.56·33-s − 1.31·37-s + 2.88·39-s + 0.780·41-s − 1.67·43-s + 0.291·47-s + 9/7·49-s − 0.840·51-s + 1.64·53-s − 0.397·57-s − 1.69·59-s + 1.02·61-s + 3.02·63-s + 0.366·67-s − 1.18·71-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 211600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 211600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(211600\)    =    \(2^{4} \cdot 5^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(1689.63\)
Root analytic conductor: \(41.1051\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 211600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 \)
good3 \( 1 - p T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 + 11 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 13 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 3 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 6 T + p T^{2} \)
83 \( 1 + 13 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.34164220084157, −12.99628000558333, −12.52671243009133, −11.78808795898790, −11.23157129778723, −10.86155720496877, −10.50635322381602, −9.930523565295381, −9.231429723610256, −8.816319328395302, −8.477965185859284, −8.232112779427486, −7.667761240401344, −7.252847179440312, −6.789076102980390, −5.931312148563202, −5.367958790485908, −4.957609869706802, −4.093475423348215, −3.955644730019425, −3.320406891149038, −2.694742233168878, −2.100248745628870, −1.623537035407646, −1.262120688458976, 0, 1.262120688458976, 1.623537035407646, 2.100248745628870, 2.694742233168878, 3.320406891149038, 3.955644730019425, 4.093475423348215, 4.957609869706802, 5.367958790485908, 5.931312148563202, 6.789076102980390, 7.252847179440312, 7.667761240401344, 8.232112779427486, 8.477965185859284, 8.816319328395302, 9.231429723610256, 9.930523565295381, 10.50635322381602, 10.86155720496877, 11.23157129778723, 11.78808795898790, 12.52671243009133, 12.99628000558333, 13.34164220084157

Graph of the $Z$-function along the critical line