Properties

Label 2-460e2-1.1-c1-0-21
Degree $2$
Conductor $211600$
Sign $-1$
Analytic cond. $1689.63$
Root an. cond. $41.1051$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 3·9-s − 5·11-s − 5·13-s − 6·17-s − 5·19-s + 3·29-s + 4·31-s − 6·37-s − 9·41-s + 5·43-s − 10·47-s − 6·49-s − 12·53-s − 2·59-s + 10·61-s + 3·63-s + 4·67-s − 6·71-s + 15·73-s + 5·77-s − 15·79-s + 9·81-s − 7·83-s + 10·89-s + 5·91-s − 10·97-s + ⋯
L(s)  = 1  − 0.377·7-s − 9-s − 1.50·11-s − 1.38·13-s − 1.45·17-s − 1.14·19-s + 0.557·29-s + 0.718·31-s − 0.986·37-s − 1.40·41-s + 0.762·43-s − 1.45·47-s − 6/7·49-s − 1.64·53-s − 0.260·59-s + 1.28·61-s + 0.377·63-s + 0.488·67-s − 0.712·71-s + 1.75·73-s + 0.569·77-s − 1.68·79-s + 81-s − 0.768·83-s + 1.05·89-s + 0.524·91-s − 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 211600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 211600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(211600\)    =    \(2^{4} \cdot 5^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(1689.63\)
Root analytic conductor: \(41.1051\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 211600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 \)
good3 \( 1 + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 - 5 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 + 2 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 15 T + p T^{2} \)
79 \( 1 + 15 T + p T^{2} \)
83 \( 1 + 7 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20743165390675, −12.76666353670297, −12.42149132188081, −11.86944983051091, −11.23373765550092, −11.01229967010054, −10.40297359976151, −9.962216225209009, −9.641869440099252, −8.834470196512242, −8.534524784953805, −8.084879611488656, −7.648459765520313, −6.851050349243827, −6.614952490237457, −6.098186485662438, −5.365183268674080, −4.874630468628633, −4.724358466661874, −3.876790646030350, −3.093571558391978, −2.732435491183429, −2.265736090756400, −1.723966170734502, −0.3680168119170131, 0, 0.3680168119170131, 1.723966170734502, 2.265736090756400, 2.732435491183429, 3.093571558391978, 3.876790646030350, 4.724358466661874, 4.874630468628633, 5.365183268674080, 6.098186485662438, 6.614952490237457, 6.851050349243827, 7.648459765520313, 8.084879611488656, 8.534524784953805, 8.834470196512242, 9.641869440099252, 9.962216225209009, 10.40297359976151, 11.01229967010054, 11.23373765550092, 11.86944983051091, 12.42149132188081, 12.76666353670297, 13.20743165390675

Graph of the $Z$-function along the critical line