Properties

Label 2-460e2-1.1-c1-0-39
Degree $2$
Conductor $211600$
Sign $-1$
Analytic cond. $1689.63$
Root an. cond. $41.1051$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 3·9-s − 11-s − 13-s − 5·19-s − 5·29-s + 2·31-s − 4·37-s − 5·41-s + 9·43-s − 6·47-s − 6·49-s + 2·53-s − 8·59-s + 8·61-s + 3·63-s − 8·67-s + 10·71-s + 3·73-s + 77-s − 3·79-s + 9·81-s − 3·83-s − 10·89-s + 91-s − 2·97-s + 3·99-s + ⋯
L(s)  = 1  − 0.377·7-s − 9-s − 0.301·11-s − 0.277·13-s − 1.14·19-s − 0.928·29-s + 0.359·31-s − 0.657·37-s − 0.780·41-s + 1.37·43-s − 0.875·47-s − 6/7·49-s + 0.274·53-s − 1.04·59-s + 1.02·61-s + 0.377·63-s − 0.977·67-s + 1.18·71-s + 0.351·73-s + 0.113·77-s − 0.337·79-s + 81-s − 0.329·83-s − 1.05·89-s + 0.104·91-s − 0.203·97-s + 0.301·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 211600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 211600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(211600\)    =    \(2^{4} \cdot 5^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(1689.63\)
Root analytic conductor: \(41.1051\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 211600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 \)
good3 \( 1 + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 5 T + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 - 3 T + p T^{2} \)
79 \( 1 + 3 T + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.24213886110817, −12.72506834467972, −12.39674368693017, −11.83780307055722, −11.30686290064377, −10.97903800565240, −10.46141701980604, −9.984636602165827, −9.452660338151083, −8.999265062556307, −8.478723930796937, −8.145805353982929, −7.540183220183239, −7.037695333060061, −6.370945648504177, −6.151634162401228, −5.431848780609729, −5.101323888356897, −4.411305136047033, −3.864158118323200, −3.239594729593786, −2.789540649366389, −2.157953154324139, −1.636340283496817, −0.5765472876696678, 0, 0.5765472876696678, 1.636340283496817, 2.157953154324139, 2.789540649366389, 3.239594729593786, 3.864158118323200, 4.411305136047033, 5.101323888356897, 5.431848780609729, 6.151634162401228, 6.370945648504177, 7.037695333060061, 7.540183220183239, 8.145805353982929, 8.478723930796937, 8.999265062556307, 9.452660338151083, 9.984636602165827, 10.46141701980604, 10.97903800565240, 11.30686290064377, 11.83780307055722, 12.39674368693017, 12.72506834467972, 13.24213886110817

Graph of the $Z$-function along the critical line