L(s) = 1 | − 3.54·3-s − 5.75·5-s − 7.46i·7-s + 3.55·9-s + 9.81·11-s − 24.4·13-s + 20.4·15-s − 31.6i·17-s − 10.6·19-s + 26.4i·21-s + 31.8i·23-s + 8.16·25-s + 19.2·27-s + (16.2 + 23.9i)29-s + 43.2·31-s + ⋯ |
L(s) = 1 | − 1.18·3-s − 1.15·5-s − 1.06i·7-s + 0.394·9-s + 0.892·11-s − 1.88·13-s + 1.36·15-s − 1.86i·17-s − 0.562·19-s + 1.25i·21-s + 1.38i·23-s + 0.326·25-s + 0.714·27-s + (0.561 + 0.827i)29-s + 1.39·31-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)(0.435−0.900i)Λ(3−s)
Λ(s)=(=(464s/2ΓC(s+1)L(s)(0.435−0.900i)Λ(1−s)
Degree: |
2 |
Conductor: |
464
= 24⋅29
|
Sign: |
0.435−0.900i
|
Analytic conductor: |
12.6430 |
Root analytic conductor: |
3.55571 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ464(463,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 464, ( :1), 0.435−0.900i)
|
Particular Values
L(23) |
≈ |
0.3806265127 |
L(21) |
≈ |
0.3806265127 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1+(−16.2−23.9i)T |
good | 3 | 1+3.54T+9T2 |
| 5 | 1+5.75T+25T2 |
| 7 | 1+7.46iT−49T2 |
| 11 | 1−9.81T+121T2 |
| 13 | 1+24.4T+169T2 |
| 17 | 1+31.6iT−289T2 |
| 19 | 1+10.6T+361T2 |
| 23 | 1−31.8iT−529T2 |
| 31 | 1−43.2T+961T2 |
| 37 | 1−31.4iT−1.36e3T2 |
| 41 | 1−58.5iT−1.68e3T2 |
| 43 | 1−0.780T+1.84e3T2 |
| 47 | 1+58.1T+2.20e3T2 |
| 53 | 1+6.29T+2.80e3T2 |
| 59 | 1+79.3iT−3.48e3T2 |
| 61 | 1−97.5iT−3.72e3T2 |
| 67 | 1−61.4iT−4.48e3T2 |
| 71 | 1+72.5iT−5.04e3T2 |
| 73 | 1+65.6iT−5.32e3T2 |
| 79 | 1−152.T+6.24e3T2 |
| 83 | 1−13.4iT−6.88e3T2 |
| 89 | 1+44.0iT−7.92e3T2 |
| 97 | 1−26.8iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.31601055345491366661248824426, −10.19941966739331172497575355443, −9.458504133826006555674324002639, −7.964957712183780052117070154734, −7.17854560189193665204960194186, −6.57709244385942404552143443107, −4.96834720508582417032144504366, −4.53377319890528997869277400217, −3.13624471496315553461419209158, −0.828489051085108487486403810277,
0.26664419552179774332153009212, 2.37008638733329363992891206703, 4.05959608390791766789301137617, 4.89280187771612941276616378732, 6.05235907248709838862836570845, 6.71975528481630778607784228085, 8.010449685762454877295557830781, 8.722257407704124537193636467712, 9.992135859909670308924676476475, 10.85021329111716239842722280951