L(s) = 1 | + (−1.77 − 2.82i)3-s + (0.925 + 0.738i)5-s + (−2.85 − 0.652i)7-s + (−3.52 + 7.31i)9-s + (−1.40 + 4.02i)11-s + (−0.443 − 0.920i)13-s + (0.442 − 3.92i)15-s + (−2.46 − 2.46i)17-s + (4.11 + 2.58i)19-s + (3.23 + 9.23i)21-s + (−4.63 + 3.69i)23-s + (−0.800 − 3.50i)25-s + (16.9 − 1.91i)27-s + (5.09 + 1.73i)29-s + (0.225 + 2.00i)31-s + ⋯ |
L(s) = 1 | + (−1.02 − 1.63i)3-s + (0.413 + 0.330i)5-s + (−1.08 − 0.246i)7-s + (−1.17 + 2.43i)9-s + (−0.424 + 1.21i)11-s + (−0.122 − 0.255i)13-s + (0.114 − 1.01i)15-s + (−0.597 − 0.597i)17-s + (0.944 + 0.593i)19-s + (0.704 + 2.01i)21-s + (−0.966 + 0.770i)23-s + (−0.160 − 0.701i)25-s + (3.26 − 0.367i)27-s + (0.946 + 0.322i)29-s + (0.0405 + 0.359i)31-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)(0.00948−0.999i)Λ(2−s)
Λ(s)=(=(464s/2ΓC(s+1/2)L(s)(0.00948−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
464
= 24⋅29
|
Sign: |
0.00948−0.999i
|
Analytic conductor: |
3.70505 |
Root analytic conductor: |
1.92485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ464(15,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 464, ( :1/2), 0.00948−0.999i)
|
Particular Values
L(1) |
≈ |
0.160402+0.158889i |
L(21) |
≈ |
0.160402+0.158889i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1+(−5.09−1.73i)T |
good | 3 | 1+(1.77+2.82i)T+(−1.30+2.70i)T2 |
| 5 | 1+(−0.925−0.738i)T+(1.11+4.87i)T2 |
| 7 | 1+(2.85+0.652i)T+(6.30+3.03i)T2 |
| 11 | 1+(1.40−4.02i)T+(−8.60−6.85i)T2 |
| 13 | 1+(0.443+0.920i)T+(−8.10+10.1i)T2 |
| 17 | 1+(2.46+2.46i)T+17iT2 |
| 19 | 1+(−4.11−2.58i)T+(8.24+17.1i)T2 |
| 23 | 1+(4.63−3.69i)T+(5.11−22.4i)T2 |
| 31 | 1+(−0.225−2.00i)T+(−30.2+6.89i)T2 |
| 37 | 1+(10.8−3.78i)T+(28.9−23.0i)T2 |
| 41 | 1+(4.85−4.85i)T−41iT2 |
| 43 | 1+(−4.38−0.493i)T+(41.9+9.56i)T2 |
| 47 | 1+(2.59+0.909i)T+(36.7+29.3i)T2 |
| 53 | 1+(4.79−6.01i)T+(−11.7−51.6i)T2 |
| 59 | 1+4.30iT−59T2 |
| 61 | 1+(−3.63+2.28i)T+(26.4−54.9i)T2 |
| 67 | 1+(3.97+1.91i)T+(41.7+52.3i)T2 |
| 71 | 1+(1.63−0.789i)T+(44.2−55.5i)T2 |
| 73 | 1+(−2.98−0.336i)T+(71.1+16.2i)T2 |
| 79 | 1+(14.0−4.90i)T+(61.7−49.2i)T2 |
| 83 | 1+(8.15−1.86i)T+(74.7−36.0i)T2 |
| 89 | 1+(−6.41+0.722i)T+(86.7−19.8i)T2 |
| 97 | 1+(14.8+9.32i)T+(42.0+87.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.52608897603778859553812905209, −10.32806835848801746519251270281, −9.830292697964222507185518533832, −8.200739827288785709256911648931, −7.22971313021887820539222908655, −6.75100959489134594117708154344, −5.90317730332710378803588461888, −4.92047847768419609690097453783, −2.88488461190306930255125734212, −1.66440153165561715521856865331,
0.15159288531644226800590404508, 3.06218943604457533425007952151, 4.02886671743848293865800646509, 5.21637209434496936374605903719, 5.86305635908859472680843473838, 6.64732728554043345303154366896, 8.599195265210919257461555077637, 9.235165406604146269743621666522, 10.04450006110795694255321759352, 10.64757986501833265215258328937