L(s) = 1 | − 2-s − 3-s + 4-s − 5-s + 6-s − 7-s − 8-s + 9-s + 10-s − 12-s + 13-s + 14-s + 15-s + 16-s + 17-s − 18-s + 4·19-s − 20-s + 21-s + 8·23-s + 24-s + 25-s − 26-s − 27-s − 28-s − 2·29-s − 30-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s + 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s + 0.218·21-s + 1.66·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s − 0.188·28-s − 0.371·29-s − 0.182·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 46410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 - T \) |
| 17 | \( 1 - T \) |
good | 11 | \( 1 + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 - 8 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + 10 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 - 12 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 - 6 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 4 T + p T^{2} \) |
| 73 | \( 1 + 14 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.20339558977389, −14.41597935234219, −13.75216000860958, −13.27453550295693, −12.72509837205106, −12.00972614380262, −11.79573380023669, −11.27372745436108, −10.57032091530464, −10.31956179370864, −9.650688541701622, −9.109788553074915, −8.601050443572271, −8.004375240297128, −7.392572091857710, −6.857706525479068, −6.526169679338609, −5.715534832991712, −5.137315346866191, −4.644823266810603, −3.612600130228356, −3.262036282873063, −2.482418905898919, −1.433612563330813, −0.8996508934021309, 0,
0.8996508934021309, 1.433612563330813, 2.482418905898919, 3.262036282873063, 3.612600130228356, 4.644823266810603, 5.137315346866191, 5.715534832991712, 6.526169679338609, 6.857706525479068, 7.392572091857710, 8.004375240297128, 8.601050443572271, 9.109788553074915, 9.650688541701622, 10.31956179370864, 10.57032091530464, 11.27372745436108, 11.79573380023669, 12.00972614380262, 12.72509837205106, 13.27453550295693, 13.75216000860958, 14.41597935234219, 15.20339558977389