L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 2·7-s − 8-s + 9-s − 12-s + 4·13-s + 2·14-s + 16-s − 6·17-s − 18-s + 8·19-s + 2·21-s + 24-s − 4·26-s − 27-s − 2·28-s + 31-s − 32-s + 6·34-s + 36-s + 4·37-s − 8·38-s − 4·39-s − 6·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s + 1.10·13-s + 0.534·14-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 1.83·19-s + 0.436·21-s + 0.204·24-s − 0.784·26-s − 0.192·27-s − 0.377·28-s + 0.179·31-s − 0.176·32-s + 1.02·34-s + 1/6·36-s + 0.657·37-s − 1.29·38-s − 0.640·39-s − 0.937·41-s + ⋯ |
Λ(s)=(=(4650s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4650s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9074482390 |
L(21) |
≈ |
0.9074482390 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+T |
| 5 | 1 |
| 31 | 1−T |
good | 7 | 1+2T+pT2 |
| 11 | 1+pT2 |
| 13 | 1−4T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−8T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+pT2 |
| 37 | 1−4T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1+8T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.460068752185368968389030422776, −7.47689438163177606510948862438, −6.89603122452971426718015346961, −6.22288671143227845702974054753, −5.62897566964802008811404209196, −4.63899227950574788419618160684, −3.64766166759127670855842491787, −2.86396218640878501834488499395, −1.64997389686777790527081002256, −0.61974766652524967827378665150,
0.61974766652524967827378665150, 1.64997389686777790527081002256, 2.86396218640878501834488499395, 3.64766166759127670855842491787, 4.63899227950574788419618160684, 5.62897566964802008811404209196, 6.22288671143227845702974054753, 6.89603122452971426718015346961, 7.47689438163177606510948862438, 8.460068752185368968389030422776