L(s) = 1 | − 2-s − 3-s + 4-s + 6-s + 5·7-s − 8-s + 9-s − 11-s − 12-s − 5·14-s + 16-s − 4·17-s − 18-s + 3·19-s − 5·21-s + 22-s − 23-s + 24-s − 27-s + 5·28-s + 6·29-s − 31-s − 32-s + 33-s + 4·34-s + 36-s − 4·37-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 1.88·7-s − 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s − 1.33·14-s + 1/4·16-s − 0.970·17-s − 0.235·18-s + 0.688·19-s − 1.09·21-s + 0.213·22-s − 0.208·23-s + 0.204·24-s − 0.192·27-s + 0.944·28-s + 1.11·29-s − 0.179·31-s − 0.176·32-s + 0.174·33-s + 0.685·34-s + 1/6·36-s − 0.657·37-s + ⋯ |
Λ(s)=(=(4650s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4650s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.401781246 |
L(21) |
≈ |
1.401781246 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+T |
| 5 | 1 |
| 31 | 1+T |
good | 7 | 1−5T+pT2 |
| 11 | 1+T+pT2 |
| 13 | 1+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1−3T+pT2 |
| 23 | 1+T+pT2 |
| 29 | 1−6T+pT2 |
| 37 | 1+4T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1−3T+pT2 |
| 59 | 1+14T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−10T+pT2 |
| 71 | 1−9T+pT2 |
| 73 | 1+7T+pT2 |
| 79 | 1−15T+pT2 |
| 83 | 1+10T+pT2 |
| 89 | 1+T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.324144007286194476239608201124, −7.65953445349591187460531797012, −7.05127744977499064075254649470, −6.19342098565817811456718165780, −5.26005152525608288771498772826, −4.82598050501665912095185675835, −3.91147502021945010746086829763, −2.51938515684160805822243348837, −1.72974318761389879716166327223, −0.78630454339232826724681158124,
0.78630454339232826724681158124, 1.72974318761389879716166327223, 2.51938515684160805822243348837, 3.91147502021945010746086829763, 4.82598050501665912095185675835, 5.26005152525608288771498772826, 6.19342098565817811456718165780, 7.05127744977499064075254649470, 7.65953445349591187460531797012, 8.324144007286194476239608201124