Properties

Label 2-4650-1.1-c1-0-23
Degree $2$
Conductor $4650$
Sign $1$
Analytic cond. $37.1304$
Root an. cond. $6.09347$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 5·7-s + 8-s + 9-s − 11-s + 12-s − 5·14-s + 16-s + 4·17-s + 18-s + 3·19-s − 5·21-s − 22-s + 23-s + 24-s + 27-s − 5·28-s + 6·29-s − 31-s + 32-s − 33-s + 4·34-s + 36-s + 4·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.88·7-s + 0.353·8-s + 1/3·9-s − 0.301·11-s + 0.288·12-s − 1.33·14-s + 1/4·16-s + 0.970·17-s + 0.235·18-s + 0.688·19-s − 1.09·21-s − 0.213·22-s + 0.208·23-s + 0.204·24-s + 0.192·27-s − 0.944·28-s + 1.11·29-s − 0.179·31-s + 0.176·32-s − 0.174·33-s + 0.685·34-s + 1/6·36-s + 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(37.1304\)
Root analytic conductor: \(6.09347\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.134478156\)
\(L(\frac12)\) \(\approx\) \(3.134478156\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
31 \( 1 + T \)
good7 \( 1 + 5 T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 3 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 + 14 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 - 15 T + p T^{2} \)
83 \( 1 - 10 T + p T^{2} \)
89 \( 1 + T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.161945058453112513595584410005, −7.49391269460864216446385515019, −6.74077270636893430153068344267, −6.17721768161906194996196903416, −5.41775919238442297270092743082, −4.48797396004496236766001778692, −3.42468065614581908043689633451, −3.20325720671657470667140663817, −2.33091504521382109584331939466, −0.850626932479884459655088516509, 0.850626932479884459655088516509, 2.33091504521382109584331939466, 3.20325720671657470667140663817, 3.42468065614581908043689633451, 4.48797396004496236766001778692, 5.41775919238442297270092743082, 6.17721768161906194996196903416, 6.74077270636893430153068344267, 7.49391269460864216446385515019, 8.161945058453112513595584410005

Graph of the $Z$-function along the critical line