L(s) = 1 | + 2-s + 3-s + 4-s + 6-s − 5·7-s + 8-s + 9-s − 11-s + 12-s − 5·14-s + 16-s + 4·17-s + 18-s + 3·19-s − 5·21-s − 22-s + 23-s + 24-s + 27-s − 5·28-s + 6·29-s − 31-s + 32-s − 33-s + 4·34-s + 36-s + 4·37-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.88·7-s + 0.353·8-s + 1/3·9-s − 0.301·11-s + 0.288·12-s − 1.33·14-s + 1/4·16-s + 0.970·17-s + 0.235·18-s + 0.688·19-s − 1.09·21-s − 0.213·22-s + 0.208·23-s + 0.204·24-s + 0.192·27-s − 0.944·28-s + 1.11·29-s − 0.179·31-s + 0.176·32-s − 0.174·33-s + 0.685·34-s + 1/6·36-s + 0.657·37-s + ⋯ |
Λ(s)=(=(4650s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4650s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.134478156 |
L(21) |
≈ |
3.134478156 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 5 | 1 |
| 31 | 1+T |
good | 7 | 1+5T+pT2 |
| 11 | 1+T+pT2 |
| 13 | 1+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1−3T+pT2 |
| 23 | 1−T+pT2 |
| 29 | 1−6T+pT2 |
| 37 | 1−4T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−T+pT2 |
| 47 | 1+4T+pT2 |
| 53 | 1+3T+pT2 |
| 59 | 1+14T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1+10T+pT2 |
| 71 | 1−9T+pT2 |
| 73 | 1−7T+pT2 |
| 79 | 1−15T+pT2 |
| 83 | 1−10T+pT2 |
| 89 | 1+T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.161945058453112513595584410005, −7.49391269460864216446385515019, −6.74077270636893430153068344267, −6.17721768161906194996196903416, −5.41775919238442297270092743082, −4.48797396004496236766001778692, −3.42468065614581908043689633451, −3.20325720671657470667140663817, −2.33091504521382109584331939466, −0.850626932479884459655088516509,
0.850626932479884459655088516509, 2.33091504521382109584331939466, 3.20325720671657470667140663817, 3.42468065614581908043689633451, 4.48797396004496236766001778692, 5.41775919238442297270092743082, 6.17721768161906194996196903416, 6.74077270636893430153068344267, 7.49391269460864216446385515019, 8.161945058453112513595584410005