Properties

Label 2-4650-1.1-c1-0-36
Degree $2$
Conductor $4650$
Sign $1$
Analytic cond. $37.1304$
Root an. cond. $6.09347$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 0.133·7-s + 8-s + 9-s + 2.92·11-s − 12-s + 4.92·13-s − 0.133·14-s + 16-s + 3.13·17-s + 18-s − 0.266·19-s + 0.133·21-s + 2.92·22-s + 2·23-s − 24-s + 4.92·26-s − 27-s − 0.133·28-s + 3.13·29-s − 31-s + 32-s − 2.92·33-s + 3.13·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.408·6-s − 0.0504·7-s + 0.353·8-s + 0.333·9-s + 0.881·11-s − 0.288·12-s + 1.36·13-s − 0.0356·14-s + 0.250·16-s + 0.759·17-s + 0.235·18-s − 0.0612·19-s + 0.0291·21-s + 0.623·22-s + 0.417·23-s − 0.204·24-s + 0.965·26-s − 0.192·27-s − 0.0252·28-s + 0.581·29-s − 0.179·31-s + 0.176·32-s − 0.509·33-s + 0.537·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(37.1304\)
Root analytic conductor: \(6.09347\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.056400991\)
\(L(\frac12)\) \(\approx\) \(3.056400991\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
31 \( 1 + T \)
good7 \( 1 + 0.133T + 7T^{2} \)
11 \( 1 - 2.92T + 11T^{2} \)
13 \( 1 - 4.92T + 13T^{2} \)
17 \( 1 - 3.13T + 17T^{2} \)
19 \( 1 + 0.266T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 - 3.13T + 29T^{2} \)
37 \( 1 - 0.924T + 37T^{2} \)
41 \( 1 + 11.9T + 41T^{2} \)
43 \( 1 + 2.05T + 43T^{2} \)
47 \( 1 + 6.84T + 47T^{2} \)
53 \( 1 - 11.1T + 53T^{2} \)
59 \( 1 - 9.84T + 59T^{2} \)
61 \( 1 - 4.92T + 61T^{2} \)
67 \( 1 + 7.84T + 67T^{2} \)
71 \( 1 + 15.1T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 + 1.13T + 79T^{2} \)
83 \( 1 - 13.1T + 83T^{2} \)
89 \( 1 + 10.4T + 89T^{2} \)
97 \( 1 - 8.71T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.343758761426842555047786304184, −7.33752787064830191040773383989, −6.60832806854210189179211412793, −6.15444031687452024189322047399, −5.37521498960997554902038239874, −4.65489861837693091810961611592, −3.72958304866677299021993123494, −3.24861434774606724455858577579, −1.82721525927059732864633649858, −0.967172360582310006964082412142, 0.967172360582310006964082412142, 1.82721525927059732864633649858, 3.24861434774606724455858577579, 3.72958304866677299021993123494, 4.65489861837693091810961611592, 5.37521498960997554902038239874, 6.15444031687452024189322047399, 6.60832806854210189179211412793, 7.33752787064830191040773383989, 8.343758761426842555047786304184

Graph of the $Z$-function along the critical line