L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 5·7-s − 8-s + 9-s − 11-s − 12-s + 5·13-s + 5·14-s + 16-s − 4·17-s − 18-s − 2·19-s + 5·21-s + 22-s + 4·23-s + 24-s − 5·26-s − 27-s − 5·28-s + 6·29-s − 31-s − 32-s + 33-s + 4·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.88·7-s − 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s + 1.38·13-s + 1.33·14-s + 1/4·16-s − 0.970·17-s − 0.235·18-s − 0.458·19-s + 1.09·21-s + 0.213·22-s + 0.834·23-s + 0.204·24-s − 0.980·26-s − 0.192·27-s − 0.944·28-s + 1.11·29-s − 0.179·31-s − 0.176·32-s + 0.174·33-s + 0.685·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 31 | \( 1 + T \) |
good | 7 | \( 1 + 5 T + p T^{2} \) |
| 11 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 - 5 T + p T^{2} \) |
| 17 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 - 4 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 - 7 T + p T^{2} \) |
| 43 | \( 1 + 11 T + p T^{2} \) |
| 47 | \( 1 + 11 T + p T^{2} \) |
| 53 | \( 1 - 3 T + p T^{2} \) |
| 59 | \( 1 - 6 T + p T^{2} \) |
| 61 | \( 1 - 9 T + p T^{2} \) |
| 67 | \( 1 - 10 T + p T^{2} \) |
| 71 | \( 1 + T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 - 15 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.114142837435940157261399077566, −6.83893056344704391925546629540, −6.66862703836088709042979183785, −6.08823451408302638545212201990, −5.17556041740466575226326972889, −4.01168811313187699243654015637, −3.27938733159626448443667655448, −2.39679452499102239502319573128, −1.02173128080965179024858437340, 0,
1.02173128080965179024858437340, 2.39679452499102239502319573128, 3.27938733159626448443667655448, 4.01168811313187699243654015637, 5.17556041740466575226326972889, 6.08823451408302638545212201990, 6.66862703836088709042979183785, 6.83893056344704391925546629540, 8.114142837435940157261399077566