Properties

Label 2-4650-1.1-c1-0-5
Degree $2$
Conductor $4650$
Sign $1$
Analytic cond. $37.1304$
Root an. cond. $6.09347$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 3.80·7-s + 8-s + 9-s − 6.13·11-s − 12-s − 4.13·13-s − 3.80·14-s + 16-s + 6.80·17-s + 18-s − 7.60·19-s + 3.80·21-s − 6.13·22-s + 2·23-s − 24-s − 4.13·26-s − 27-s − 3.80·28-s + 6.80·29-s − 31-s + 32-s + 6.13·33-s + 6.80·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.408·6-s − 1.43·7-s + 0.353·8-s + 0.333·9-s − 1.85·11-s − 0.288·12-s − 1.14·13-s − 1.01·14-s + 0.250·16-s + 1.65·17-s + 0.235·18-s − 1.74·19-s + 0.830·21-s − 1.30·22-s + 0.417·23-s − 0.204·24-s − 0.811·26-s − 0.192·27-s − 0.718·28-s + 1.26·29-s − 0.179·31-s + 0.176·32-s + 1.06·33-s + 1.16·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(37.1304\)
Root analytic conductor: \(6.09347\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.224731679\)
\(L(\frac12)\) \(\approx\) \(1.224731679\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
31 \( 1 + T \)
good7 \( 1 + 3.80T + 7T^{2} \)
11 \( 1 + 6.13T + 11T^{2} \)
13 \( 1 + 4.13T + 13T^{2} \)
17 \( 1 - 6.80T + 17T^{2} \)
19 \( 1 + 7.60T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 - 6.80T + 29T^{2} \)
37 \( 1 + 8.13T + 37T^{2} \)
41 \( 1 - 2.47T + 41T^{2} \)
43 \( 1 - 3.33T + 43T^{2} \)
47 \( 1 - 11.2T + 47T^{2} \)
53 \( 1 - 9.46T + 53T^{2} \)
59 \( 1 + 8.27T + 59T^{2} \)
61 \( 1 + 4.13T + 61T^{2} \)
67 \( 1 - 10.2T + 67T^{2} \)
71 \( 1 + 4.33T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 + 4.80T + 79T^{2} \)
83 \( 1 - 11.4T + 83T^{2} \)
89 \( 1 - 18.6T + 89T^{2} \)
97 \( 1 + 13.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.056821129182108923787759866792, −7.40115082944199664297898212573, −6.74974753704165953930396993384, −5.99592314284602498793469529539, −5.37258876743113723929884765723, −4.78010204163407449248737534927, −3.76889656850593026516049765991, −2.88070683260513755142109517390, −2.32035493249962011122116839537, −0.52924925277956732473628264734, 0.52924925277956732473628264734, 2.32035493249962011122116839537, 2.88070683260513755142109517390, 3.76889656850593026516049765991, 4.78010204163407449248737534927, 5.37258876743113723929884765723, 5.99592314284602498793469529539, 6.74974753704165953930396993384, 7.40115082944199664297898212573, 8.056821129182108923787759866792

Graph of the $Z$-function along the critical line