L(s) = 1 | + (1.75 − 1.38i)5-s − 1.50·11-s − i·13-s + 2.72i·17-s − 0.726·19-s − 4.72i·23-s + (1.14 − 4.86i)25-s − 7.55·29-s − 3.00·31-s − 5.00i·37-s − 5.78·41-s − 2.72i·43-s + 10.2i·47-s + 7·49-s − 7.55i·53-s + ⋯ |
L(s) = 1 | + (0.783 − 0.621i)5-s − 0.453·11-s − 0.277i·13-s + 0.661i·17-s − 0.166·19-s − 0.985i·23-s + (0.228 − 0.973i)25-s − 1.40·29-s − 0.540·31-s − 0.823i·37-s − 0.903·41-s − 0.415i·43-s + 1.49i·47-s + 49-s − 1.03i·53-s + ⋯ |
Λ(s)=(=(4680s/2ΓC(s)L(s)(−0.783+0.621i)Λ(2−s)
Λ(s)=(=(4680s/2ΓC(s+1/2)L(s)(−0.783+0.621i)Λ(1−s)
Degree: |
2 |
Conductor: |
4680
= 23⋅32⋅5⋅13
|
Sign: |
−0.783+0.621i
|
Analytic conductor: |
37.3699 |
Root analytic conductor: |
6.11309 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4680(2809,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4680, ( :1/2), −0.783+0.621i)
|
Particular Values
L(1) |
≈ |
1.098159397 |
L(21) |
≈ |
1.098159397 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−1.75+1.38i)T |
| 13 | 1+iT |
good | 7 | 1−7T2 |
| 11 | 1+1.50T+11T2 |
| 17 | 1−2.72iT−17T2 |
| 19 | 1+0.726T+19T2 |
| 23 | 1+4.72iT−23T2 |
| 29 | 1+7.55T+29T2 |
| 31 | 1+3.00T+31T2 |
| 37 | 1+5.00iT−37T2 |
| 41 | 1+5.78T+41T2 |
| 43 | 1+2.72iT−43T2 |
| 47 | 1−10.2iT−47T2 |
| 53 | 1+7.55iT−53T2 |
| 59 | 1+12.5T+59T2 |
| 61 | 1−6.28T+61T2 |
| 67 | 1+12.5iT−67T2 |
| 71 | 1+4.77T+71T2 |
| 73 | 1+12.0iT−73T2 |
| 79 | 1+5.27T+79T2 |
| 83 | 1−7.78iT−83T2 |
| 89 | 1−1.78T+89T2 |
| 97 | 1+6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.067280939904542458198515079497, −7.38362675912891075622090017153, −6.39946989738521429270424756177, −5.81549909634357433015035795755, −5.14038688791482945576165117922, −4.37472819897967762719263278948, −3.43492733731255321985367912248, −2.34458374553479956325734422953, −1.61642080019442197313070869995, −0.27553392848357052012657172700,
1.43977903962926244005598572791, 2.32376218571008333153546126415, 3.14935217996270840335666641041, 3.99632613537478789566895332304, 5.14440111942479451691307537530, 5.60021254918280908032851939676, 6.42591721172297187669787477953, 7.21348383142416693559525341412, 7.62723007256731898107850275040, 8.759461530740780467180565002304