Properties

Label 2-4704-1.1-c1-0-26
Degree $2$
Conductor $4704$
Sign $1$
Analytic cond. $37.5616$
Root an. cond. $6.12875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·5-s + 9-s − 2·11-s + 2·13-s − 4·15-s + 4·19-s − 6·23-s + 11·25-s − 27-s − 10·29-s + 8·31-s + 2·33-s + 10·37-s − 2·39-s + 4·41-s − 8·43-s + 4·45-s + 4·47-s + 10·53-s − 8·55-s − 4·57-s − 8·59-s + 6·61-s + 8·65-s + 4·67-s + 6·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.78·5-s + 1/3·9-s − 0.603·11-s + 0.554·13-s − 1.03·15-s + 0.917·19-s − 1.25·23-s + 11/5·25-s − 0.192·27-s − 1.85·29-s + 1.43·31-s + 0.348·33-s + 1.64·37-s − 0.320·39-s + 0.624·41-s − 1.21·43-s + 0.596·45-s + 0.583·47-s + 1.37·53-s − 1.07·55-s − 0.529·57-s − 1.04·59-s + 0.768·61-s + 0.992·65-s + 0.488·67-s + 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4704\)    =    \(2^{5} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(37.5616\)
Root analytic conductor: \(6.12875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.353882303\)
\(L(\frac12)\) \(\approx\) \(2.353882303\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 14 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.279041445583954269580152420931, −7.53628213226894683621941986320, −6.59168190460477202975948009550, −5.97431604276500309005136289819, −5.57054459148342379924700545698, −4.86263496822252259250448584118, −3.80178865956147297903992698888, −2.63860153156949338353954958777, −1.91683092707172386565079248122, −0.904574473973546245991803949373, 0.904574473973546245991803949373, 1.91683092707172386565079248122, 2.63860153156949338353954958777, 3.80178865956147297903992698888, 4.86263496822252259250448584118, 5.57054459148342379924700545698, 5.97431604276500309005136289819, 6.59168190460477202975948009550, 7.53628213226894683621941986320, 8.279041445583954269580152420931

Graph of the $Z$-function along the critical line