L(s) = 1 | − 3-s + 4·5-s + 9-s − 2·11-s + 2·13-s − 4·15-s + 4·19-s − 6·23-s + 11·25-s − 27-s − 10·29-s + 8·31-s + 2·33-s + 10·37-s − 2·39-s + 4·41-s − 8·43-s + 4·45-s + 4·47-s + 10·53-s − 8·55-s − 4·57-s − 8·59-s + 6·61-s + 8·65-s + 4·67-s + 6·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.78·5-s + 1/3·9-s − 0.603·11-s + 0.554·13-s − 1.03·15-s + 0.917·19-s − 1.25·23-s + 11/5·25-s − 0.192·27-s − 1.85·29-s + 1.43·31-s + 0.348·33-s + 1.64·37-s − 0.320·39-s + 0.624·41-s − 1.21·43-s + 0.596·45-s + 0.583·47-s + 1.37·53-s − 1.07·55-s − 0.529·57-s − 1.04·59-s + 0.768·61-s + 0.992·65-s + 0.488·67-s + 0.722·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.353882303\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.353882303\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 + 2 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 10 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 - 10 T + p T^{2} \) |
| 41 | \( 1 - 4 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 - 4 T + p T^{2} \) |
| 53 | \( 1 - 10 T + p T^{2} \) |
| 59 | \( 1 + 8 T + p T^{2} \) |
| 61 | \( 1 - 6 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 14 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 + 4 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.279041445583954269580152420931, −7.53628213226894683621941986320, −6.59168190460477202975948009550, −5.97431604276500309005136289819, −5.57054459148342379924700545698, −4.86263496822252259250448584118, −3.80178865956147297903992698888, −2.63860153156949338353954958777, −1.91683092707172386565079248122, −0.904574473973546245991803949373,
0.904574473973546245991803949373, 1.91683092707172386565079248122, 2.63860153156949338353954958777, 3.80178865956147297903992698888, 4.86263496822252259250448584118, 5.57054459148342379924700545698, 5.97431604276500309005136289819, 6.59168190460477202975948009550, 7.53628213226894683621941986320, 8.279041445583954269580152420931