Properties

Label 2-4704-1.1-c1-0-36
Degree $2$
Conductor $4704$
Sign $1$
Analytic cond. $37.5616$
Root an. cond. $6.12875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s + 2·11-s + 2·15-s + 2·17-s − 2·23-s − 25-s + 27-s + 6·29-s + 4·31-s + 2·33-s + 6·37-s − 2·41-s + 2·45-s + 2·51-s − 6·53-s + 4·55-s − 12·59-s + 12·61-s + 12·67-s − 2·69-s + 10·71-s + 12·73-s − 75-s − 12·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s + 0.603·11-s + 0.516·15-s + 0.485·17-s − 0.417·23-s − 1/5·25-s + 0.192·27-s + 1.11·29-s + 0.718·31-s + 0.348·33-s + 0.986·37-s − 0.312·41-s + 0.298·45-s + 0.280·51-s − 0.824·53-s + 0.539·55-s − 1.56·59-s + 1.53·61-s + 1.46·67-s − 0.240·69-s + 1.18·71-s + 1.40·73-s − 0.115·75-s − 1.35·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4704\)    =    \(2^{5} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(37.5616\)
Root analytic conductor: \(6.12875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.222615829\)
\(L(\frac12)\) \(\approx\) \(3.222615829\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 12 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 - 12 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.286888431596555286657334298365, −7.73854178489723702308111376486, −6.69894450238348765055660509469, −6.25757774983507607022752153906, −5.39842320766302478198171451779, −4.54420676214985832644687837204, −3.70337928799270777592208975099, −2.79368202791990232736895950901, −1.98810207865713462948946984742, −1.02538988745536652107482241574, 1.02538988745536652107482241574, 1.98810207865713462948946984742, 2.79368202791990232736895950901, 3.70337928799270777592208975099, 4.54420676214985832644687837204, 5.39842320766302478198171451779, 6.25757774983507607022752153906, 6.69894450238348765055660509469, 7.73854178489723702308111376486, 8.286888431596555286657334298365

Graph of the $Z$-function along the critical line