L(s) = 1 | + 3-s + 2·5-s + 9-s + 2·11-s + 2·15-s + 2·17-s − 2·23-s − 25-s + 27-s + 6·29-s + 4·31-s + 2·33-s + 6·37-s − 2·41-s + 2·45-s + 2·51-s − 6·53-s + 4·55-s − 12·59-s + 12·61-s + 12·67-s − 2·69-s + 10·71-s + 12·73-s − 75-s − 12·79-s + 81-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.894·5-s + 1/3·9-s + 0.603·11-s + 0.516·15-s + 0.485·17-s − 0.417·23-s − 1/5·25-s + 0.192·27-s + 1.11·29-s + 0.718·31-s + 0.348·33-s + 0.986·37-s − 0.312·41-s + 0.298·45-s + 0.280·51-s − 0.824·53-s + 0.539·55-s − 1.56·59-s + 1.53·61-s + 1.46·67-s − 0.240·69-s + 1.18·71-s + 1.40·73-s − 0.115·75-s − 1.35·79-s + 1/9·81-s + ⋯ |
Λ(s)=(=(4704s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4704s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.222615829 |
L(21) |
≈ |
3.222615829 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1 |
good | 5 | 1−2T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+2T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1−12T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1−10T+pT2 |
| 73 | 1−12T+pT2 |
| 79 | 1+12T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1−14T+pT2 |
| 97 | 1+12T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.286888431596555286657334298365, −7.73854178489723702308111376486, −6.69894450238348765055660509469, −6.25757774983507607022752153906, −5.39842320766302478198171451779, −4.54420676214985832644687837204, −3.70337928799270777592208975099, −2.79368202791990232736895950901, −1.98810207865713462948946984742, −1.02538988745536652107482241574,
1.02538988745536652107482241574, 1.98810207865713462948946984742, 2.79368202791990232736895950901, 3.70337928799270777592208975099, 4.54420676214985832644687837204, 5.39842320766302478198171451779, 6.25757774983507607022752153906, 6.69894450238348765055660509469, 7.73854178489723702308111376486, 8.286888431596555286657334298365