Properties

Label 2-4704-1.1-c1-0-77
Degree 22
Conductor 47044704
Sign 1-1
Analytic cond. 37.561637.5616
Root an. cond. 6.128756.12875
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 2·11-s + 13-s − 2·17-s − 5·19-s − 6·23-s − 5·25-s + 27-s − 8·29-s + 3·31-s + 2·33-s − 9·37-s + 39-s + 2·41-s − 43-s − 8·47-s − 2·51-s + 6·53-s − 5·57-s − 6·59-s − 2·61-s + 5·67-s − 6·69-s − 4·71-s − 11·73-s − 5·75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.603·11-s + 0.277·13-s − 0.485·17-s − 1.14·19-s − 1.25·23-s − 25-s + 0.192·27-s − 1.48·29-s + 0.538·31-s + 0.348·33-s − 1.47·37-s + 0.160·39-s + 0.312·41-s − 0.152·43-s − 1.16·47-s − 0.280·51-s + 0.824·53-s − 0.662·57-s − 0.781·59-s − 0.256·61-s + 0.610·67-s − 0.722·69-s − 0.474·71-s − 1.28·73-s − 0.577·75-s + ⋯

Functional equation

Λ(s)=(4704s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(4704s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 47044704    =    253722^{5} \cdot 3 \cdot 7^{2}
Sign: 1-1
Analytic conductor: 37.561637.5616
Root analytic conductor: 6.128756.12875
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 4704, ( :1/2), 1)(2,\ 4704,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1T 1 - T
7 1 1
good5 1+pT2 1 + p T^{2}
11 12T+pT2 1 - 2 T + p T^{2}
13 1T+pT2 1 - T + p T^{2}
17 1+2T+pT2 1 + 2 T + p T^{2}
19 1+5T+pT2 1 + 5 T + p T^{2}
23 1+6T+pT2 1 + 6 T + p T^{2}
29 1+8T+pT2 1 + 8 T + p T^{2}
31 13T+pT2 1 - 3 T + p T^{2}
37 1+9T+pT2 1 + 9 T + p T^{2}
41 12T+pT2 1 - 2 T + p T^{2}
43 1+T+pT2 1 + T + p T^{2}
47 1+8T+pT2 1 + 8 T + p T^{2}
53 16T+pT2 1 - 6 T + p T^{2}
59 1+6T+pT2 1 + 6 T + p T^{2}
61 1+2T+pT2 1 + 2 T + p T^{2}
67 15T+pT2 1 - 5 T + p T^{2}
71 1+4T+pT2 1 + 4 T + p T^{2}
73 1+11T+pT2 1 + 11 T + p T^{2}
79 15T+pT2 1 - 5 T + p T^{2}
83 1+pT2 1 + p T^{2}
89 112T+pT2 1 - 12 T + p T^{2}
97 118T+pT2 1 - 18 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.987675374844838129590612597508, −7.32243773069261655364904977814, −6.43013069867086278789436804818, −5.94158506737373692809718111279, −4.83709893898329359224367027717, −3.99009978659117823685197448551, −3.52084700325289299977561592671, −2.25107260413219029512016311984, −1.66294531816129412158028493345, 0, 1.66294531816129412158028493345, 2.25107260413219029512016311984, 3.52084700325289299977561592671, 3.99009978659117823685197448551, 4.83709893898329359224367027717, 5.94158506737373692809718111279, 6.43013069867086278789436804818, 7.32243773069261655364904977814, 7.987675374844838129590612597508

Graph of the ZZ-function along the critical line