L(s) = 1 | + 3-s + 9-s + 2·11-s + 13-s − 2·17-s − 5·19-s − 6·23-s − 5·25-s + 27-s − 8·29-s + 3·31-s + 2·33-s − 9·37-s + 39-s + 2·41-s − 43-s − 8·47-s − 2·51-s + 6·53-s − 5·57-s − 6·59-s − 2·61-s + 5·67-s − 6·69-s − 4·71-s − 11·73-s − 5·75-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 0.603·11-s + 0.277·13-s − 0.485·17-s − 1.14·19-s − 1.25·23-s − 25-s + 0.192·27-s − 1.48·29-s + 0.538·31-s + 0.348·33-s − 1.47·37-s + 0.160·39-s + 0.312·41-s − 0.152·43-s − 1.16·47-s − 0.280·51-s + 0.824·53-s − 0.662·57-s − 0.781·59-s − 0.256·61-s + 0.610·67-s − 0.722·69-s − 0.474·71-s − 1.28·73-s − 0.577·75-s + ⋯ |
Λ(s)=(=(4704s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4704s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1 |
good | 5 | 1+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1+5T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1+8T+pT2 |
| 31 | 1−3T+pT2 |
| 37 | 1+9T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−5T+pT2 |
| 71 | 1+4T+pT2 |
| 73 | 1+11T+pT2 |
| 79 | 1−5T+pT2 |
| 83 | 1+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1−18T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.987675374844838129590612597508, −7.32243773069261655364904977814, −6.43013069867086278789436804818, −5.94158506737373692809718111279, −4.83709893898329359224367027717, −3.99009978659117823685197448551, −3.52084700325289299977561592671, −2.25107260413219029512016311984, −1.66294531816129412158028493345, 0,
1.66294531816129412158028493345, 2.25107260413219029512016311984, 3.52084700325289299977561592671, 3.99009978659117823685197448551, 4.83709893898329359224367027717, 5.94158506737373692809718111279, 6.43013069867086278789436804818, 7.32243773069261655364904977814, 7.987675374844838129590612597508