L(s) = 1 | + 3-s + 9-s + 2·11-s + 13-s − 2·17-s − 5·19-s − 6·23-s − 5·25-s + 27-s − 8·29-s + 3·31-s + 2·33-s − 9·37-s + 39-s + 2·41-s − 43-s − 8·47-s − 2·51-s + 6·53-s − 5·57-s − 6·59-s − 2·61-s + 5·67-s − 6·69-s − 4·71-s − 11·73-s − 5·75-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 0.603·11-s + 0.277·13-s − 0.485·17-s − 1.14·19-s − 1.25·23-s − 25-s + 0.192·27-s − 1.48·29-s + 0.538·31-s + 0.348·33-s − 1.47·37-s + 0.160·39-s + 0.312·41-s − 0.152·43-s − 1.16·47-s − 0.280·51-s + 0.824·53-s − 0.662·57-s − 0.781·59-s − 0.256·61-s + 0.610·67-s − 0.722·69-s − 0.474·71-s − 1.28·73-s − 0.577·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 - T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + 5 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 8 T + p T^{2} \) |
| 31 | \( 1 - 3 T + p T^{2} \) |
| 37 | \( 1 + 9 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 + T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + 6 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 - 5 T + p T^{2} \) |
| 71 | \( 1 + 4 T + p T^{2} \) |
| 73 | \( 1 + 11 T + p T^{2} \) |
| 79 | \( 1 - 5 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 - 12 T + p T^{2} \) |
| 97 | \( 1 - 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.987675374844838129590612597508, −7.32243773069261655364904977814, −6.43013069867086278789436804818, −5.94158506737373692809718111279, −4.83709893898329359224367027717, −3.99009978659117823685197448551, −3.52084700325289299977561592671, −2.25107260413219029512016311984, −1.66294531816129412158028493345, 0,
1.66294531816129412158028493345, 2.25107260413219029512016311984, 3.52084700325289299977561592671, 3.99009978659117823685197448551, 4.83709893898329359224367027717, 5.94158506737373692809718111279, 6.43013069867086278789436804818, 7.32243773069261655364904977814, 7.987675374844838129590612597508