L(s) = 1 | + 1.79·3-s + 3.79·5-s − 7-s + 0.208·9-s + 3.79·11-s + 6.79·15-s + 3·17-s − 7.37·19-s − 1.79·21-s + 6·23-s + 9.37·25-s − 5.00·27-s − 2.20·29-s + 31-s + 6.79·33-s − 3.79·35-s + 4·37-s + 1.58·41-s + 4.37·43-s + 0.791·45-s + 12.1·47-s + 49-s + 5.37·51-s − 10.5·53-s + 14.3·55-s − 13.2·57-s + 9·59-s + ⋯ |
L(s) = 1 | + 1.03·3-s + 1.69·5-s − 0.377·7-s + 0.0695·9-s + 1.14·11-s + 1.75·15-s + 0.727·17-s − 1.69·19-s − 0.390·21-s + 1.25·23-s + 1.87·25-s − 0.962·27-s − 0.410·29-s + 0.179·31-s + 1.18·33-s − 0.640·35-s + 0.657·37-s + 0.247·41-s + 0.667·43-s + 0.117·45-s + 1.77·47-s + 0.142·49-s + 0.752·51-s − 1.45·53-s + 1.93·55-s − 1.74·57-s + 1.17·59-s + ⋯ |
Λ(s)=(=(4732s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4732s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.095230348 |
L(21) |
≈ |
4.095230348 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
| 13 | 1 |
good | 3 | 1−1.79T+3T2 |
| 5 | 1−3.79T+5T2 |
| 11 | 1−3.79T+11T2 |
| 17 | 1−3T+17T2 |
| 19 | 1+7.37T+19T2 |
| 23 | 1−6T+23T2 |
| 29 | 1+2.20T+29T2 |
| 31 | 1−T+31T2 |
| 37 | 1−4T+37T2 |
| 41 | 1−1.58T+41T2 |
| 43 | 1−4.37T+43T2 |
| 47 | 1−12.1T+47T2 |
| 53 | 1+10.5T+53T2 |
| 59 | 1−9T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1−7T+67T2 |
| 71 | 1+7.58T+71T2 |
| 73 | 1+14T+73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1−9T+83T2 |
| 89 | 1−5.37T+89T2 |
| 97 | 1−18.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.632164310327843624409446583232, −7.59341398981278110193384535627, −6.74100028685390125904658899133, −6.12551863375761642811233815104, −5.58224591100784967254643811304, −4.48098865359157370573716348482, −3.59305087609701513458108466387, −2.69726886461902622718065349987, −2.11474084394772602895127858407, −1.14728394116008939265892258862,
1.14728394116008939265892258862, 2.11474084394772602895127858407, 2.69726886461902622718065349987, 3.59305087609701513458108466387, 4.48098865359157370573716348482, 5.58224591100784967254643811304, 6.12551863375761642811233815104, 6.74100028685390125904658899133, 7.59341398981278110193384535627, 8.632164310327843624409446583232