L(s) = 1 | − 0.816·2-s − 1.53·3-s − 1.33·4-s + 1.25·6-s − 5.03·7-s + 2.72·8-s − 0.633·9-s − 3.03·11-s + 2.05·12-s + 4.57·13-s + 4.11·14-s + 0.443·16-s + 1.07·17-s + 0.517·18-s + 19-s + 7.74·21-s + 2.47·22-s − 4.11·23-s − 4.18·24-s − 3.73·26-s + 5.58·27-s + 6.71·28-s − 1.07·29-s + 5.58·31-s − 5.80·32-s + 4.66·33-s − 0.879·34-s + ⋯ |
L(s) = 1 | − 0.577·2-s − 0.888·3-s − 0.666·4-s + 0.512·6-s − 1.90·7-s + 0.962·8-s − 0.211·9-s − 0.914·11-s + 0.592·12-s + 1.26·13-s + 1.09·14-s + 0.110·16-s + 0.261·17-s + 0.121·18-s + 0.229·19-s + 1.68·21-s + 0.528·22-s − 0.857·23-s − 0.854·24-s − 0.732·26-s + 1.07·27-s + 1.26·28-s − 0.199·29-s + 1.00·31-s − 1.02·32-s + 0.812·33-s − 0.150·34-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.3567225561 |
L(21) |
≈ |
0.3567225561 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1−T |
good | 2 | 1+0.816T+2T2 |
| 3 | 1+1.53T+3T2 |
| 7 | 1+5.03T+7T2 |
| 11 | 1+3.03T+11T2 |
| 13 | 1−4.57T+13T2 |
| 17 | 1−1.07T+17T2 |
| 23 | 1+4.11T+23T2 |
| 29 | 1+1.07T+29T2 |
| 31 | 1−5.58T+31T2 |
| 37 | 1+0.0947T+37T2 |
| 41 | 1−10.6T+41T2 |
| 43 | 1+5.03T+43T2 |
| 47 | 1−12.2T+47T2 |
| 53 | 1−4.09T+53T2 |
| 59 | 1+1.39T+59T2 |
| 61 | 1+5.69T+61T2 |
| 67 | 1+5.28T+67T2 |
| 71 | 1+5.67T+71T2 |
| 73 | 1+9.07T+73T2 |
| 79 | 1+5.39T+79T2 |
| 83 | 1+1.95T+83T2 |
| 89 | 1+2.18T+89T2 |
| 97 | 1−2.16T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63206226457689822574229513159, −10.23071942198849525938986948920, −9.292832878707652797997066644687, −8.495178541244963706394724501283, −7.37293913524197533799493645969, −6.13384615958499342549676490383, −5.67595031944522013313221045089, −4.21642320315638735892081658755, −3.02795612468554015068081966573, −0.60852986743194229708444574820,
0.60852986743194229708444574820, 3.02795612468554015068081966573, 4.21642320315638735892081658755, 5.67595031944522013313221045089, 6.13384615958499342549676490383, 7.37293913524197533799493645969, 8.495178541244963706394724501283, 9.292832878707652797997066644687, 10.23071942198849525938986948920, 10.63206226457689822574229513159