Properties

Label 2-475-1.1-c5-0-80
Degree $2$
Conductor $475$
Sign $1$
Analytic cond. $76.1823$
Root an. cond. $8.72824$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·2-s + 11·3-s + 17·4-s + 77·6-s + 197·7-s − 105·8-s − 122·9-s − 468·11-s + 187·12-s + 921·13-s + 1.37e3·14-s − 1.27e3·16-s + 1.10e3·17-s − 854·18-s + 361·19-s + 2.16e3·21-s − 3.27e3·22-s + 3.64e3·23-s − 1.15e3·24-s + 6.44e3·26-s − 4.01e3·27-s + 3.34e3·28-s + 7.52e3·29-s + 1.42e3·31-s − 5.59e3·32-s − 5.14e3·33-s + 7.74e3·34-s + ⋯
L(s)  = 1  + 1.23·2-s + 0.705·3-s + 0.531·4-s + 0.873·6-s + 1.51·7-s − 0.580·8-s − 0.502·9-s − 1.16·11-s + 0.374·12-s + 1.51·13-s + 1.88·14-s − 1.24·16-s + 0.929·17-s − 0.621·18-s + 0.229·19-s + 1.07·21-s − 1.44·22-s + 1.43·23-s − 0.409·24-s + 1.87·26-s − 1.05·27-s + 0.807·28-s + 1.66·29-s + 0.265·31-s − 0.965·32-s − 0.822·33-s + 1.14·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(76.1823\)
Root analytic conductor: \(8.72824\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(6.074029967\)
\(L(\frac12)\) \(\approx\) \(6.074029967\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 - p^{2} T \)
good2 \( 1 - 7 T + p^{5} T^{2} \)
3 \( 1 - 11 T + p^{5} T^{2} \)
7 \( 1 - 197 T + p^{5} T^{2} \)
11 \( 1 + 468 T + p^{5} T^{2} \)
13 \( 1 - 921 T + p^{5} T^{2} \)
17 \( 1 - 1107 T + p^{5} T^{2} \)
23 \( 1 - 3641 T + p^{5} T^{2} \)
29 \( 1 - 7525 T + p^{5} T^{2} \)
31 \( 1 - 1422 T + p^{5} T^{2} \)
37 \( 1 - 11282 T + p^{5} T^{2} \)
41 \( 1 + 678 T + p^{5} T^{2} \)
43 \( 1 + 5974 T + p^{5} T^{2} \)
47 \( 1 - 11072 T + p^{5} T^{2} \)
53 \( 1 - 17461 T + p^{5} T^{2} \)
59 \( 1 + 46305 T + p^{5} T^{2} \)
61 \( 1 - 16292 T + p^{5} T^{2} \)
67 \( 1 + 36373 T + p^{5} T^{2} \)
71 \( 1 + 82208 T + p^{5} T^{2} \)
73 \( 1 - 43861 T + p^{5} T^{2} \)
79 \( 1 + 30130 T + p^{5} T^{2} \)
83 \( 1 - 91626 T + p^{5} T^{2} \)
89 \( 1 - 79170 T + p^{5} T^{2} \)
97 \( 1 + 128718 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51112967558247513373588919102, −8.999277094674896054091501245289, −8.358223250387405484647754944374, −7.63490211236736879458588322466, −6.10484932976164333646195212573, −5.28128394215012048854442146875, −4.53309122392308457187306933915, −3.31946864949369114536833123650, −2.57964612064087253454405669060, −1.08321807040080984653596810933, 1.08321807040080984653596810933, 2.57964612064087253454405669060, 3.31946864949369114536833123650, 4.53309122392308457187306933915, 5.28128394215012048854442146875, 6.10484932976164333646195212573, 7.63490211236736879458588322466, 8.358223250387405484647754944374, 8.999277094674896054091501245289, 10.51112967558247513373588919102

Graph of the $Z$-function along the critical line