L(s) = 1 | + 7·2-s + 11·3-s + 17·4-s + 77·6-s + 197·7-s − 105·8-s − 122·9-s − 468·11-s + 187·12-s + 921·13-s + 1.37e3·14-s − 1.27e3·16-s + 1.10e3·17-s − 854·18-s + 361·19-s + 2.16e3·21-s − 3.27e3·22-s + 3.64e3·23-s − 1.15e3·24-s + 6.44e3·26-s − 4.01e3·27-s + 3.34e3·28-s + 7.52e3·29-s + 1.42e3·31-s − 5.59e3·32-s − 5.14e3·33-s + 7.74e3·34-s + ⋯ |
L(s) = 1 | + 1.23·2-s + 0.705·3-s + 0.531·4-s + 0.873·6-s + 1.51·7-s − 0.580·8-s − 0.502·9-s − 1.16·11-s + 0.374·12-s + 1.51·13-s + 1.88·14-s − 1.24·16-s + 0.929·17-s − 0.621·18-s + 0.229·19-s + 1.07·21-s − 1.44·22-s + 1.43·23-s − 0.409·24-s + 1.87·26-s − 1.05·27-s + 0.807·28-s + 1.66·29-s + 0.265·31-s − 0.965·32-s − 0.822·33-s + 1.14·34-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(475s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
6.074029967 |
L(21) |
≈ |
6.074029967 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1−p2T |
good | 2 | 1−7T+p5T2 |
| 3 | 1−11T+p5T2 |
| 7 | 1−197T+p5T2 |
| 11 | 1+468T+p5T2 |
| 13 | 1−921T+p5T2 |
| 17 | 1−1107T+p5T2 |
| 23 | 1−3641T+p5T2 |
| 29 | 1−7525T+p5T2 |
| 31 | 1−1422T+p5T2 |
| 37 | 1−11282T+p5T2 |
| 41 | 1+678T+p5T2 |
| 43 | 1+5974T+p5T2 |
| 47 | 1−11072T+p5T2 |
| 53 | 1−17461T+p5T2 |
| 59 | 1+46305T+p5T2 |
| 61 | 1−16292T+p5T2 |
| 67 | 1+36373T+p5T2 |
| 71 | 1+82208T+p5T2 |
| 73 | 1−43861T+p5T2 |
| 79 | 1+30130T+p5T2 |
| 83 | 1−91626T+p5T2 |
| 89 | 1−79170T+p5T2 |
| 97 | 1+128718T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.51112967558247513373588919102, −8.999277094674896054091501245289, −8.358223250387405484647754944374, −7.63490211236736879458588322466, −6.10484932976164333646195212573, −5.28128394215012048854442146875, −4.53309122392308457187306933915, −3.31946864949369114536833123650, −2.57964612064087253454405669060, −1.08321807040080984653596810933,
1.08321807040080984653596810933, 2.57964612064087253454405669060, 3.31946864949369114536833123650, 4.53309122392308457187306933915, 5.28128394215012048854442146875, 6.10484932976164333646195212573, 7.63490211236736879458588322466, 8.358223250387405484647754944374, 8.999277094674896054091501245289, 10.51112967558247513373588919102