L(s) = 1 | + (−1 + 1.73i)3-s + (1 + 1.73i)4-s + 4·7-s + (−0.499 − 0.866i)9-s + 3·11-s − 3.99·12-s + (1 + 1.73i)13-s + (−1.99 + 3.46i)16-s + (3 − 5.19i)17-s + (−3.5 − 2.59i)19-s + (−4 + 6.92i)21-s − 4.00·27-s + (4 + 6.92i)28-s + (1.5 + 2.59i)29-s − 7·31-s + ⋯ |
L(s) = 1 | + (−0.577 + 0.999i)3-s + (0.5 + 0.866i)4-s + 1.51·7-s + (−0.166 − 0.288i)9-s + 0.904·11-s − 1.15·12-s + (0.277 + 0.480i)13-s + (−0.499 + 0.866i)16-s + (0.727 − 1.26i)17-s + (−0.802 − 0.596i)19-s + (−0.872 + 1.51i)21-s − 0.769·27-s + (0.755 + 1.30i)28-s + (0.278 + 0.482i)29-s − 1.25·31-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(−0.0977−0.995i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(−0.0977−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
−0.0977−0.995i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), −0.0977−0.995i)
|
Particular Values
L(1) |
≈ |
1.06118+1.17050i |
L(21) |
≈ |
1.06118+1.17050i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(3.5+2.59i)T |
good | 2 | 1+(−1−1.73i)T2 |
| 3 | 1+(1−1.73i)T+(−1.5−2.59i)T2 |
| 7 | 1−4T+7T2 |
| 11 | 1−3T+11T2 |
| 13 | 1+(−1−1.73i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−3+5.19i)T+(−8.5−14.7i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1+(−1.5−2.59i)T+(−14.5+25.1i)T2 |
| 31 | 1+7T+31T2 |
| 37 | 1+8T+37T2 |
| 41 | 1+(−3+5.19i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2−3.46i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−3−5.19i)T+(−23.5+40.7i)T2 |
| 53 | 1+(3+5.19i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−7.5+12.9i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.5+4.33i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1−1.73i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−1.5+2.59i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−4+6.92i)T+(−36.5−63.2i)T2 |
| 79 | 1+(2.5−4.33i)T+(−39.5−68.4i)T2 |
| 83 | 1+12T+83T2 |
| 89 | 1+(−7.5−12.9i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−4+6.92i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25680112181617328687651782649, −10.71593279964040892144337013764, −9.412174090981647598879264232348, −8.614350793160160309967491943006, −7.60332834659405498782401041705, −6.72053709103147934181714728347, −5.30231486765980986190015992088, −4.53081813332288507663557053442, −3.59627781104575035677850307993, −1.90450901963427336876409659814,
1.24096142123401968690163984206, 1.86919817563922856821254525608, 4.03663261716282539335541559312, 5.45898555686003375075929085438, 6.03635348207729154368808649323, 6.99493743745264066898582476958, 7.88098328543309962338861424988, 8.812319320166885670974834814309, 10.23460724456847848843181183484, 10.86667897450936964890459142585