L(s) = 1 | + (−1 + 1.73i)2-s + (−0.999 − 1.73i)4-s − 4·7-s + (1.5 + 2.59i)9-s − 11-s + (1 + 1.73i)13-s + (4 − 6.92i)14-s + (1.99 − 3.46i)16-s + (1 − 1.73i)17-s − 6·18-s + (−3.5 − 2.59i)19-s + (1 − 1.73i)22-s + (−3 − 5.19i)23-s − 3.99·26-s + (3.99 + 6.92i)28-s + (−4.5 − 7.79i)29-s + ⋯ |
L(s) = 1 | + (−0.707 + 1.22i)2-s + (−0.499 − 0.866i)4-s − 1.51·7-s + (0.5 + 0.866i)9-s − 0.301·11-s + (0.277 + 0.480i)13-s + (1.06 − 1.85i)14-s + (0.499 − 0.866i)16-s + (0.242 − 0.420i)17-s − 1.41·18-s + (−0.802 − 0.596i)19-s + (0.213 − 0.369i)22-s + (−0.625 − 1.08i)23-s − 0.784·26-s + (0.755 + 1.30i)28-s + (−0.835 − 1.44i)29-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(0.0977+0.995i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(0.0977+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
0.0977+0.995i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 475, ( :1/2), 0.0977+0.995i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(3.5+2.59i)T |
good | 2 | 1+(1−1.73i)T+(−1−1.73i)T2 |
| 3 | 1+(−1.5−2.59i)T2 |
| 7 | 1+4T+7T2 |
| 11 | 1+T+11T2 |
| 13 | 1+(−1−1.73i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−1+1.73i)T+(−8.5−14.7i)T2 |
| 23 | 1+(3+5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+(4.5+7.79i)T+(−14.5+25.1i)T2 |
| 31 | 1+7T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+(1−1.73i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1−1.73i)T+(−21.5−37.2i)T2 |
| 47 | 1+(3+5.19i)T+(−23.5+40.7i)T2 |
| 53 | 1+(2+3.46i)T+(−26.5+45.8i)T2 |
| 59 | 1+(4.5−7.79i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.5−6.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5−8.66i)T+(−33.5+58.0i)T2 |
| 71 | 1+(0.5−0.866i)T+(−35.5−61.4i)T2 |
| 73 | 1+(5−8.66i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.5−0.866i)T+(−39.5−68.4i)T2 |
| 83 | 1+6T+83T2 |
| 89 | 1+(−5.5−9.52i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−3+5.19i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36751164086513074431839345817, −9.716328079682888654030215313233, −8.910473288127111086879216213944, −7.977194035414614945938543856948, −7.07799198823784898065570791569, −6.43332306229834107196970330317, −5.51485640114720601559545485755, −4.10228078569520378231572376488, −2.55355022563390817707266768711, 0,
1.68095685129292630338843942599, 3.29013321991267835158951725753, 3.70399542926455084123582712884, 5.75222278372115589474196927489, 6.56685710101383599199555415969, 7.81680258989507878547397959837, 9.061086989972332851215588596742, 9.532024088411233542618671296969, 10.30600777154511825610365359512