L(s) = 1 | + 4-s + 9-s − 2·11-s + 16-s − 19-s + 36-s − 2·44-s − 49-s − 2·61-s + 64-s − 76-s + 81-s − 2·99-s − 2·101-s + ⋯ |
L(s) = 1 | + 4-s + 9-s − 2·11-s + 16-s − 19-s + 36-s − 2·44-s − 49-s − 2·61-s + 64-s − 76-s + 81-s − 2·99-s − 2·101-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(475s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
1
|
Analytic conductor: |
0.237055 |
Root analytic conductor: |
0.486883 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ475(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.025856114 |
L(21) |
≈ |
1.025856114 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+T |
good | 2 | (1−T)(1+T) |
| 3 | (1−T)(1+T) |
| 7 | 1+T2 |
| 11 | (1+T)2 |
| 13 | (1−T)(1+T) |
| 17 | 1+T2 |
| 23 | 1+T2 |
| 29 | (1−T)(1+T) |
| 31 | (1−T)(1+T) |
| 37 | (1−T)(1+T) |
| 41 | (1−T)(1+T) |
| 43 | 1+T2 |
| 47 | 1+T2 |
| 53 | (1−T)(1+T) |
| 59 | (1−T)(1+T) |
| 61 | (1+T)2 |
| 67 | (1−T)(1+T) |
| 71 | (1−T)(1+T) |
| 73 | 1+T2 |
| 79 | (1−T)(1+T) |
| 83 | 1+T2 |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92589093376341656534887151392, −10.55255274398139820172084891263, −9.705610040248617143663172232154, −8.238351875950604978574364954925, −7.58302198357719280831316953677, −6.70986731944779184213579089094, −5.65739929328088967394736940749, −4.55107441902203862755643435150, −3.04174701047875108100977709927, −1.94756753976557909188690809793,
1.94756753976557909188690809793, 3.04174701047875108100977709927, 4.55107441902203862755643435150, 5.65739929328088967394736940749, 6.70986731944779184213579089094, 7.58302198357719280831316953677, 8.238351875950604978574364954925, 9.705610040248617143663172232154, 10.55255274398139820172084891263, 10.92589093376341656534887151392