L(s) = 1 | + 1.30·3-s + 2.30·5-s − 7-s − 1.30·9-s + 4·11-s + 2.60·13-s + 3·15-s − 17-s + 1.39·19-s − 1.30·21-s + 4·23-s + 0.302·25-s − 5.60·27-s − 5.21·29-s + 3.69·31-s + 5.21·33-s − 2.30·35-s − 11.8·37-s + 3.39·39-s + 6.51·41-s − 0.697·43-s − 3.00·45-s + 4.60·47-s + 49-s − 1.30·51-s + 4.30·53-s + 9.21·55-s + ⋯ |
L(s) = 1 | + 0.752·3-s + 1.02·5-s − 0.377·7-s − 0.434·9-s + 1.20·11-s + 0.722·13-s + 0.774·15-s − 0.242·17-s + 0.319·19-s − 0.284·21-s + 0.834·23-s + 0.0605·25-s − 1.07·27-s − 0.967·29-s + 0.664·31-s + 0.907·33-s − 0.389·35-s − 1.94·37-s + 0.543·39-s + 1.01·41-s − 0.106·43-s − 0.447·45-s + 0.671·47-s + 0.142·49-s − 0.182·51-s + 0.591·53-s + 1.24·55-s + ⋯ |
Λ(s)=(=(476s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(476s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.069244930 |
L(21) |
≈ |
2.069244930 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
| 17 | 1+T |
good | 3 | 1−1.30T+3T2 |
| 5 | 1−2.30T+5T2 |
| 11 | 1−4T+11T2 |
| 13 | 1−2.60T+13T2 |
| 19 | 1−1.39T+19T2 |
| 23 | 1−4T+23T2 |
| 29 | 1+5.21T+29T2 |
| 31 | 1−3.69T+31T2 |
| 37 | 1+11.8T+37T2 |
| 41 | 1−6.51T+41T2 |
| 43 | 1+0.697T+43T2 |
| 47 | 1−4.60T+47T2 |
| 53 | 1−4.30T+53T2 |
| 59 | 1+8T+59T2 |
| 61 | 1+2.51T+61T2 |
| 67 | 1−6.30T+67T2 |
| 71 | 1+10.6T+71T2 |
| 73 | 1+10.5T+73T2 |
| 79 | 1−4.60T+79T2 |
| 83 | 1+11.2T+83T2 |
| 89 | 1+13.8T+89T2 |
| 97 | 1+9.69T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.95314083862301695146980952542, −9.883127184923822987309935775602, −9.084510549202141237522329932422, −8.691166707003106484924568493522, −7.31021489287142883396217234915, −6.30036227906475194920740174462, −5.53163241973076577201627516367, −3.96049769465594348872907084961, −2.92304355581998684891020819472, −1.61734174675707997492615665344,
1.61734174675707997492615665344, 2.92304355581998684891020819472, 3.96049769465594348872907084961, 5.53163241973076577201627516367, 6.30036227906475194920740174462, 7.31021489287142883396217234915, 8.691166707003106484924568493522, 9.084510549202141237522329932422, 9.883127184923822987309935775602, 10.95314083862301695146980952542