Properties

Label 2-476-119.10-c1-0-2
Degree $2$
Conductor $476$
Sign $0.690 - 0.723i$
Analytic cond. $3.80087$
Root an. cond. $1.94958$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.110 − 0.223i)3-s + (−0.800 + 0.701i)5-s + (−1.28 + 2.31i)7-s + (1.78 − 2.33i)9-s + (3.58 − 0.235i)11-s + (1.36 + 1.36i)13-s + (0.245 + 0.101i)15-s + (−3.82 + 1.54i)17-s + (0.937 + 7.11i)19-s + (0.659 + 0.0324i)21-s + (7.25 + 3.57i)23-s + (−0.504 + 3.83i)25-s + (−1.45 − 0.289i)27-s + (0.397 + 1.99i)29-s + (5.57 − 2.75i)31-s + ⋯
L(s)  = 1  + (−0.0637 − 0.129i)3-s + (−0.357 + 0.313i)5-s + (−0.485 + 0.874i)7-s + (0.596 − 0.776i)9-s + (1.08 − 0.0709i)11-s + (0.378 + 0.378i)13-s + (0.0633 + 0.0262i)15-s + (−0.927 + 0.373i)17-s + (0.215 + 1.63i)19-s + (0.143 + 0.00708i)21-s + (1.51 + 0.745i)23-s + (−0.100 + 0.766i)25-s + (−0.279 − 0.0556i)27-s + (0.0737 + 0.370i)29-s + (1.00 − 0.494i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 476 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.690 - 0.723i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 476 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.690 - 0.723i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(476\)    =    \(2^{2} \cdot 7 \cdot 17\)
Sign: $0.690 - 0.723i$
Analytic conductor: \(3.80087\)
Root analytic conductor: \(1.94958\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{476} (129, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 476,\ (\ :1/2),\ 0.690 - 0.723i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.20903 + 0.517610i\)
\(L(\frac12)\) \(\approx\) \(1.20903 + 0.517610i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (1.28 - 2.31i)T \)
17 \( 1 + (3.82 - 1.54i)T \)
good3 \( 1 + (0.110 + 0.223i)T + (-1.82 + 2.38i)T^{2} \)
5 \( 1 + (0.800 - 0.701i)T + (0.652 - 4.95i)T^{2} \)
11 \( 1 + (-3.58 + 0.235i)T + (10.9 - 1.43i)T^{2} \)
13 \( 1 + (-1.36 - 1.36i)T + 13iT^{2} \)
19 \( 1 + (-0.937 - 7.11i)T + (-18.3 + 4.91i)T^{2} \)
23 \( 1 + (-7.25 - 3.57i)T + (14.0 + 18.2i)T^{2} \)
29 \( 1 + (-0.397 - 1.99i)T + (-26.7 + 11.0i)T^{2} \)
31 \( 1 + (-5.57 + 2.75i)T + (18.8 - 24.5i)T^{2} \)
37 \( 1 + (-0.117 + 1.78i)T + (-36.6 - 4.82i)T^{2} \)
41 \( 1 + (-0.719 + 3.61i)T + (-37.8 - 15.6i)T^{2} \)
43 \( 1 + (2.66 + 6.42i)T + (-30.4 + 30.4i)T^{2} \)
47 \( 1 + (0.501 - 1.87i)T + (-40.7 - 23.5i)T^{2} \)
53 \( 1 + (2.76 + 3.60i)T + (-13.7 + 51.1i)T^{2} \)
59 \( 1 + (-9.46 - 1.24i)T + (56.9 + 15.2i)T^{2} \)
61 \( 1 + (-3.71 - 10.9i)T + (-48.3 + 37.1i)T^{2} \)
67 \( 1 + (13.7 + 7.94i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-7.66 - 5.11i)T + (27.1 + 65.5i)T^{2} \)
73 \( 1 + (11.9 + 4.06i)T + (57.9 + 44.4i)T^{2} \)
79 \( 1 + (0.276 - 0.560i)T + (-48.0 - 62.6i)T^{2} \)
83 \( 1 + (-2.77 + 6.70i)T + (-58.6 - 58.6i)T^{2} \)
89 \( 1 + (15.6 + 4.19i)T + (77.0 + 44.5i)T^{2} \)
97 \( 1 + (6.30 - 1.25i)T + (89.6 - 37.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.36964466797167433095669935590, −10.13675687536522977744650394208, −9.224644086938623996016274237865, −8.660900161596278919535925353365, −7.25452886391513091772533666873, −6.53384471540688302335839779817, −5.69260425735926310457065894642, −4.10482578954709387496280319227, −3.30446573680036534102643754024, −1.55840516018418995849788571932, 0.932144614813464166262289846418, 2.87053497384524878004656492189, 4.31521425242726446283332176463, 4.79022961757121759355867912279, 6.56628798445918636135106444522, 7.02362326169824470459969428249, 8.227821631814940014477524622250, 9.129327294997180727198497335192, 10.03158132459443081143344531259, 10.95165687055840715105450630566

Graph of the $Z$-function along the critical line