L(s) = 1 | + (−0.110 − 0.223i)3-s + (−0.800 + 0.701i)5-s + (−1.28 + 2.31i)7-s + (1.78 − 2.33i)9-s + (3.58 − 0.235i)11-s + (1.36 + 1.36i)13-s + (0.245 + 0.101i)15-s + (−3.82 + 1.54i)17-s + (0.937 + 7.11i)19-s + (0.659 + 0.0324i)21-s + (7.25 + 3.57i)23-s + (−0.504 + 3.83i)25-s + (−1.45 − 0.289i)27-s + (0.397 + 1.99i)29-s + (5.57 − 2.75i)31-s + ⋯ |
L(s) = 1 | + (−0.0637 − 0.129i)3-s + (−0.357 + 0.313i)5-s + (−0.485 + 0.874i)7-s + (0.596 − 0.776i)9-s + (1.08 − 0.0709i)11-s + (0.378 + 0.378i)13-s + (0.0633 + 0.0262i)15-s + (−0.927 + 0.373i)17-s + (0.215 + 1.63i)19-s + (0.143 + 0.00708i)21-s + (1.51 + 0.745i)23-s + (−0.100 + 0.766i)25-s + (−0.279 − 0.0556i)27-s + (0.0737 + 0.370i)29-s + (1.00 − 0.494i)31-s + ⋯ |
Λ(s)=(=(476s/2ΓC(s)L(s)(0.690−0.723i)Λ(2−s)
Λ(s)=(=(476s/2ΓC(s+1/2)L(s)(0.690−0.723i)Λ(1−s)
Degree: |
2 |
Conductor: |
476
= 22⋅7⋅17
|
Sign: |
0.690−0.723i
|
Analytic conductor: |
3.80087 |
Root analytic conductor: |
1.94958 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ476(129,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 476, ( :1/2), 0.690−0.723i)
|
Particular Values
L(1) |
≈ |
1.20903+0.517610i |
L(21) |
≈ |
1.20903+0.517610i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(1.28−2.31i)T |
| 17 | 1+(3.82−1.54i)T |
good | 3 | 1+(0.110+0.223i)T+(−1.82+2.38i)T2 |
| 5 | 1+(0.800−0.701i)T+(0.652−4.95i)T2 |
| 11 | 1+(−3.58+0.235i)T+(10.9−1.43i)T2 |
| 13 | 1+(−1.36−1.36i)T+13iT2 |
| 19 | 1+(−0.937−7.11i)T+(−18.3+4.91i)T2 |
| 23 | 1+(−7.25−3.57i)T+(14.0+18.2i)T2 |
| 29 | 1+(−0.397−1.99i)T+(−26.7+11.0i)T2 |
| 31 | 1+(−5.57+2.75i)T+(18.8−24.5i)T2 |
| 37 | 1+(−0.117+1.78i)T+(−36.6−4.82i)T2 |
| 41 | 1+(−0.719+3.61i)T+(−37.8−15.6i)T2 |
| 43 | 1+(2.66+6.42i)T+(−30.4+30.4i)T2 |
| 47 | 1+(0.501−1.87i)T+(−40.7−23.5i)T2 |
| 53 | 1+(2.76+3.60i)T+(−13.7+51.1i)T2 |
| 59 | 1+(−9.46−1.24i)T+(56.9+15.2i)T2 |
| 61 | 1+(−3.71−10.9i)T+(−48.3+37.1i)T2 |
| 67 | 1+(13.7+7.94i)T+(33.5+58.0i)T2 |
| 71 | 1+(−7.66−5.11i)T+(27.1+65.5i)T2 |
| 73 | 1+(11.9+4.06i)T+(57.9+44.4i)T2 |
| 79 | 1+(0.276−0.560i)T+(−48.0−62.6i)T2 |
| 83 | 1+(−2.77+6.70i)T+(−58.6−58.6i)T2 |
| 89 | 1+(15.6+4.19i)T+(77.0+44.5i)T2 |
| 97 | 1+(6.30−1.25i)T+(89.6−37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.36964466797167433095669935590, −10.13675687536522977744650394208, −9.224644086938623996016274237865, −8.660900161596278919535925353365, −7.25452886391513091772533666873, −6.53384471540688302335839779817, −5.69260425735926310457065894642, −4.10482578954709387496280319227, −3.30446573680036534102643754024, −1.55840516018418995849788571932,
0.932144614813464166262289846418, 2.87053497384524878004656492189, 4.31521425242726446283332176463, 4.79022961757121759355867912279, 6.56628798445918636135106444522, 7.02362326169824470459969428249, 8.227821631814940014477524622250, 9.129327294997180727198497335192, 10.03158132459443081143344531259, 10.95165687055840715105450630566