L(s) = 1 | + (−0.951 − 1.92i)3-s + (3.19 − 2.79i)5-s + (1.81 − 1.92i)7-s + (−0.991 + 1.29i)9-s + (1.13 − 0.0742i)11-s + (3.38 + 3.38i)13-s + (−8.43 − 3.49i)15-s + (−1.61 + 3.79i)17-s + (0.342 + 2.59i)19-s + (−5.44 − 1.65i)21-s + (−1.44 − 0.714i)23-s + (1.69 − 12.8i)25-s + (−2.89 − 0.575i)27-s + (1.39 + 7.02i)29-s + (−2.18 + 1.07i)31-s + ⋯ |
L(s) = 1 | + (−0.549 − 1.11i)3-s + (1.42 − 1.25i)5-s + (0.684 − 0.728i)7-s + (−0.330 + 0.430i)9-s + (0.341 − 0.0223i)11-s + (0.937 + 0.937i)13-s + (−2.17 − 0.902i)15-s + (−0.391 + 0.920i)17-s + (0.0785 + 0.596i)19-s + (−1.18 − 0.362i)21-s + (−0.302 − 0.148i)23-s + (0.339 − 2.57i)25-s + (−0.557 − 0.110i)27-s + (0.259 + 1.30i)29-s + (−0.392 + 0.193i)31-s + ⋯ |
Λ(s)=(=(476s/2ΓC(s)L(s)(−0.221+0.975i)Λ(2−s)
Λ(s)=(=(476s/2ΓC(s+1/2)L(s)(−0.221+0.975i)Λ(1−s)
Degree: |
2 |
Conductor: |
476
= 22⋅7⋅17
|
Sign: |
−0.221+0.975i
|
Analytic conductor: |
3.80087 |
Root analytic conductor: |
1.94958 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ476(129,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 476, ( :1/2), −0.221+0.975i)
|
Particular Values
L(1) |
≈ |
1.03387−1.29475i |
L(21) |
≈ |
1.03387−1.29475i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−1.81+1.92i)T |
| 17 | 1+(1.61−3.79i)T |
good | 3 | 1+(0.951+1.92i)T+(−1.82+2.38i)T2 |
| 5 | 1+(−3.19+2.79i)T+(0.652−4.95i)T2 |
| 11 | 1+(−1.13+0.0742i)T+(10.9−1.43i)T2 |
| 13 | 1+(−3.38−3.38i)T+13iT2 |
| 19 | 1+(−0.342−2.59i)T+(−18.3+4.91i)T2 |
| 23 | 1+(1.44+0.714i)T+(14.0+18.2i)T2 |
| 29 | 1+(−1.39−7.02i)T+(−26.7+11.0i)T2 |
| 31 | 1+(2.18−1.07i)T+(18.8−24.5i)T2 |
| 37 | 1+(0.312−4.76i)T+(−36.6−4.82i)T2 |
| 41 | 1+(1.07−5.39i)T+(−37.8−15.6i)T2 |
| 43 | 1+(2.41+5.83i)T+(−30.4+30.4i)T2 |
| 47 | 1+(1.67−6.23i)T+(−40.7−23.5i)T2 |
| 53 | 1+(6.29+8.20i)T+(−13.7+51.1i)T2 |
| 59 | 1+(6.62+0.872i)T+(56.9+15.2i)T2 |
| 61 | 1+(−3.08−9.08i)T+(−48.3+37.1i)T2 |
| 67 | 1+(4.42+2.55i)T+(33.5+58.0i)T2 |
| 71 | 1+(−2.82−1.89i)T+(27.1+65.5i)T2 |
| 73 | 1+(−1.40−0.476i)T+(57.9+44.4i)T2 |
| 79 | 1+(5.29−10.7i)T+(−48.0−62.6i)T2 |
| 83 | 1+(5.81−14.0i)T+(−58.6−58.6i)T2 |
| 89 | 1+(1.50+0.403i)T+(77.0+44.5i)T2 |
| 97 | 1+(−15.8+3.15i)T+(89.6−37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83534534848884409857042871445, −9.844550757755530599124197854166, −8.817547348276293128728097699391, −8.146937502095732262371991065826, −6.75929950331032039693160320350, −6.20610440821376850263558685083, −5.22485734034695650459207774104, −4.13339134494885328303927366636, −1.63005566369249592255550265378, −1.39585857736458637107098392478,
2.10213942323596683243730825282, 3.27460062719398352302284290135, 4.76487929964109958125855460275, 5.69557858812245686069530625679, 6.22365689850062963081340331035, 7.53042991190406721863168586625, 8.968336404646523615012669332295, 9.638926467916073160323376236064, 10.44708672403342955259373694063, 11.04937692913201771272948031327