L(s) = 1 | + (−0.940 + 1.22i)3-s + (0.338 − 2.57i)5-s + (−1.75 − 1.97i)7-s + (0.158 + 0.592i)9-s + (−4.68 + 0.616i)11-s + 3.87i·13-s + (2.83 + 2.83i)15-s + (−3.27 + 2.49i)17-s + (−6.62 + 1.77i)19-s + (4.07 − 0.298i)21-s + (−1.66 − 2.16i)23-s + (−1.68 − 0.451i)25-s + (−5.15 − 2.13i)27-s + (0.556 − 0.230i)29-s + (4.31 − 5.62i)31-s + ⋯ |
L(s) = 1 | + (−0.543 + 0.707i)3-s + (0.151 − 1.15i)5-s + (−0.665 − 0.746i)7-s + (0.0528 + 0.197i)9-s + (−1.41 + 0.186i)11-s + 1.07i·13-s + (0.732 + 0.732i)15-s + (−0.795 + 0.606i)17-s + (−1.51 + 0.407i)19-s + (0.889 − 0.0652i)21-s + (−0.346 − 0.451i)23-s + (−0.336 − 0.0902i)25-s + (−0.992 − 0.411i)27-s + (0.103 − 0.0428i)29-s + (0.775 − 1.01i)31-s + ⋯ |
Λ(s)=(=(476s/2ΓC(s)L(s)(−0.998+0.0572i)Λ(2−s)
Λ(s)=(=(476s/2ΓC(s+1/2)L(s)(−0.998+0.0572i)Λ(1−s)
Degree: |
2 |
Conductor: |
476
= 22⋅7⋅17
|
Sign: |
−0.998+0.0572i
|
Analytic conductor: |
3.80087 |
Root analytic conductor: |
1.94958 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ476(457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 476, ( :1/2), −0.998+0.0572i)
|
Particular Values
L(1) |
≈ |
0.000801771−0.0279652i |
L(21) |
≈ |
0.000801771−0.0279652i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(1.75+1.97i)T |
| 17 | 1+(3.27−2.49i)T |
good | 3 | 1+(0.940−1.22i)T+(−0.776−2.89i)T2 |
| 5 | 1+(−0.338+2.57i)T+(−4.82−1.29i)T2 |
| 11 | 1+(4.68−0.616i)T+(10.6−2.84i)T2 |
| 13 | 1−3.87iT−13T2 |
| 19 | 1+(6.62−1.77i)T+(16.4−9.5i)T2 |
| 23 | 1+(1.66+2.16i)T+(−5.95+22.2i)T2 |
| 29 | 1+(−0.556+0.230i)T+(20.5−20.5i)T2 |
| 31 | 1+(−4.31+5.62i)T+(−8.02−29.9i)T2 |
| 37 | 1+(0.582+0.0767i)T+(35.7+9.57i)T2 |
| 41 | 1+(2.37+0.983i)T+(28.9+28.9i)T2 |
| 43 | 1+(−2.76+2.76i)T−43iT2 |
| 47 | 1+(6.58+3.80i)T+(23.5+40.7i)T2 |
| 53 | 1+(−0.299+1.11i)T+(−45.8−26.5i)T2 |
| 59 | 1+(−4.18−1.12i)T+(51.0+29.5i)T2 |
| 61 | 1+(4.93−3.78i)T+(15.7−58.9i)T2 |
| 67 | 1+(−4.69−8.13i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−2.13−5.14i)T+(−50.2+50.2i)T2 |
| 73 | 1+(11.5+8.83i)T+(18.8+70.5i)T2 |
| 79 | 1+(−8.98−11.7i)T+(−20.4+76.3i)T2 |
| 83 | 1+(7.85+7.85i)T+83iT2 |
| 89 | 1+(−1.39−0.804i)T+(44.5+77.0i)T2 |
| 97 | 1+(−5.18+2.14i)T+(68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25065108136688450472399747253, −10.41073718582092815729432871926, −9.941147491257308083901512721380, −8.816337740057683444836683768817, −8.014390225439293269341237548624, −6.71765677099911296742880503127, −5.69868277852780786716606226635, −4.56773476126131881722921759012, −4.17796526721909571668914145052, −2.13131841374912956444530893869,
0.01662003830731141878320007024, 2.40885191883332549884006049288, 3.18218620293421265391887346180, 5.06775240396509419227842600618, 6.16378583726273462949773444209, 6.61950207032494742151640092469, 7.62935175726852238244018786011, 8.661753743756063447931267935831, 9.893283119074538438194347482456, 10.64852323806582967811649986176