L(s) = 1 | + (1.75 − 2.28i)3-s + (−0.0892 + 0.678i)5-s + (1.39 − 2.25i)7-s + (−1.37 − 5.12i)9-s + (−2.70 + 0.355i)11-s − 1.91i·13-s + (1.39 + 1.39i)15-s + (3.97 − 1.09i)17-s + (−7.44 + 1.99i)19-s + (−2.70 − 7.12i)21-s + (3.96 + 5.16i)23-s + (4.37 + 1.17i)25-s + (−6.14 − 2.54i)27-s + (8.44 − 3.49i)29-s + (0.277 − 0.361i)31-s + ⋯ |
L(s) = 1 | + (1.01 − 1.32i)3-s + (−0.0399 + 0.303i)5-s + (0.525 − 0.850i)7-s + (−0.457 − 1.70i)9-s + (−0.814 + 0.107i)11-s − 0.530i·13-s + (0.359 + 0.359i)15-s + (0.964 − 0.264i)17-s + (−1.70 + 0.457i)19-s + (−0.590 − 1.55i)21-s + (0.826 + 1.07i)23-s + (0.875 + 0.234i)25-s + (−1.18 − 0.489i)27-s + (1.56 − 0.649i)29-s + (0.0497 − 0.0648i)31-s + ⋯ |
Λ(s)=(=(476s/2ΓC(s)L(s)(−0.0362+0.999i)Λ(2−s)
Λ(s)=(=(476s/2ΓC(s+1/2)L(s)(−0.0362+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
476
= 22⋅7⋅17
|
Sign: |
−0.0362+0.999i
|
Analytic conductor: |
3.80087 |
Root analytic conductor: |
1.94958 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ476(457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 476, ( :1/2), −0.0362+0.999i)
|
Particular Values
L(1) |
≈ |
1.33768−1.38706i |
L(21) |
≈ |
1.33768−1.38706i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−1.39+2.25i)T |
| 17 | 1+(−3.97+1.09i)T |
good | 3 | 1+(−1.75+2.28i)T+(−0.776−2.89i)T2 |
| 5 | 1+(0.0892−0.678i)T+(−4.82−1.29i)T2 |
| 11 | 1+(2.70−0.355i)T+(10.6−2.84i)T2 |
| 13 | 1+1.91iT−13T2 |
| 19 | 1+(7.44−1.99i)T+(16.4−9.5i)T2 |
| 23 | 1+(−3.96−5.16i)T+(−5.95+22.2i)T2 |
| 29 | 1+(−8.44+3.49i)T+(20.5−20.5i)T2 |
| 31 | 1+(−0.277+0.361i)T+(−8.02−29.9i)T2 |
| 37 | 1+(7.40+0.974i)T+(35.7+9.57i)T2 |
| 41 | 1+(−3.96−1.64i)T+(28.9+28.9i)T2 |
| 43 | 1+(5.63−5.63i)T−43iT2 |
| 47 | 1+(7.20+4.15i)T+(23.5+40.7i)T2 |
| 53 | 1+(0.206−0.769i)T+(−45.8−26.5i)T2 |
| 59 | 1+(−5.80−1.55i)T+(51.0+29.5i)T2 |
| 61 | 1+(0.639−0.490i)T+(15.7−58.9i)T2 |
| 67 | 1+(−7.59−13.1i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−0.336−0.811i)T+(−50.2+50.2i)T2 |
| 73 | 1+(−2.84−2.18i)T+(18.8+70.5i)T2 |
| 79 | 1+(−2.21−2.88i)T+(−20.4+76.3i)T2 |
| 83 | 1+(−3.81−3.81i)T+83iT2 |
| 89 | 1+(−9.12−5.26i)T+(44.5+77.0i)T2 |
| 97 | 1+(−5.24+2.17i)T+(68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71018981877957179046010833340, −9.954093823157116398638066756471, −8.516361613301924509827136461629, −8.039278842208090957160829417899, −7.26889529840309537712966186976, −6.51702470781619755607528185970, −5.06394139542098445800976217164, −3.53123077851181125683282498546, −2.51108447985337794125602846700, −1.17017680419381091252401643237,
2.28215674561093583323396586153, 3.25989524362416185735288446560, 4.65554135615827542975984710606, 5.04678280743605357011367784431, 6.58636925678063558965064983740, 8.251319626985917913175580854956, 8.521871735493402208642980654536, 9.266978257663712932945933365799, 10.44763950557269514811651282234, 10.76416261321629581108232290328