L(s) = 1 | + 3.64·5-s − 7-s − 5.29·11-s − 0.354·17-s + 19-s − 5.29·23-s + 8.29·25-s + 9.64·29-s − 6·31-s − 3.64·35-s + 5.29·37-s + 3.29·41-s − 1.29·43-s + 4.35·47-s + 49-s + 13.6·53-s − 19.2·55-s + 8·59-s + 9.29·61-s + 7.29·67-s + 8.93·71-s − 2·73-s + 5.29·77-s − 3.29·79-s + 14.9·83-s − 1.29·85-s + 3.29·89-s + ⋯ |
L(s) = 1 | + 1.63·5-s − 0.377·7-s − 1.59·11-s − 0.0859·17-s + 0.229·19-s − 1.10·23-s + 1.65·25-s + 1.79·29-s − 1.07·31-s − 0.616·35-s + 0.869·37-s + 0.514·41-s − 0.196·43-s + 0.635·47-s + 0.142·49-s + 1.87·53-s − 2.60·55-s + 1.04·59-s + 1.18·61-s + 0.890·67-s + 1.06·71-s − 0.234·73-s + 0.603·77-s − 0.370·79-s + 1.63·83-s − 0.140·85-s + 0.348·89-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.302893185 |
L(21) |
≈ |
2.302893185 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1−T |
good | 5 | 1−3.64T+5T2 |
| 11 | 1+5.29T+11T2 |
| 13 | 1+13T2 |
| 17 | 1+0.354T+17T2 |
| 23 | 1+5.29T+23T2 |
| 29 | 1−9.64T+29T2 |
| 31 | 1+6T+31T2 |
| 37 | 1−5.29T+37T2 |
| 41 | 1−3.29T+41T2 |
| 43 | 1+1.29T+43T2 |
| 47 | 1−4.35T+47T2 |
| 53 | 1−13.6T+53T2 |
| 59 | 1−8T+59T2 |
| 61 | 1−9.29T+61T2 |
| 67 | 1−7.29T+67T2 |
| 71 | 1−8.93T+71T2 |
| 73 | 1+2T+73T2 |
| 79 | 1+3.29T+79T2 |
| 83 | 1−14.9T+83T2 |
| 89 | 1−3.29T+89T2 |
| 97 | 1−4.58T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.342498511489194493128300538292, −7.55514568041951029706274017288, −6.70885970927139041592557610147, −5.99358146865372199238851536794, −5.46523503775127360361047023021, −4.83611213004660297604455525197, −3.66354092059792735001229663505, −2.45024797473173932349400087792, −2.29569875313131728817694321872, −0.822697844479424147022668890964,
0.822697844479424147022668890964, 2.29569875313131728817694321872, 2.45024797473173932349400087792, 3.66354092059792735001229663505, 4.83611213004660297604455525197, 5.46523503775127360361047023021, 5.99358146865372199238851536794, 6.70885970927139041592557610147, 7.55514568041951029706274017288, 8.342498511489194493128300538292