L(s) = 1 | + 1.79·5-s − 7-s + 3.83·11-s − 3.43·13-s + 0.293·17-s − 19-s + 6.83·23-s − 1.78·25-s + 5.62·29-s − 4.78·31-s − 1.79·35-s + 11.5·37-s − 5.57·41-s + 4.78·43-s − 12.7·47-s + 49-s + 4.12·53-s + 6.87·55-s + 11.5·61-s − 6.16·65-s + 10.2·67-s + 3.53·71-s − 10.4·73-s − 3.83·77-s − 2.22·79-s + 17.7·83-s + 0.526·85-s + ⋯ |
L(s) = 1 | + 0.802·5-s − 0.377·7-s + 1.15·11-s − 0.953·13-s + 0.0711·17-s − 0.229·19-s + 1.42·23-s − 0.356·25-s + 1.04·29-s − 0.859·31-s − 0.303·35-s + 1.90·37-s − 0.871·41-s + 0.729·43-s − 1.85·47-s + 0.142·49-s + 0.566·53-s + 0.927·55-s + 1.48·61-s − 0.764·65-s + 1.24·67-s + 0.420·71-s − 1.22·73-s − 0.436·77-s − 0.249·79-s + 1.95·83-s + 0.0571·85-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.294672831 |
L(21) |
≈ |
2.294672831 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1+T |
good | 5 | 1−1.79T+5T2 |
| 11 | 1−3.83T+11T2 |
| 13 | 1+3.43T+13T2 |
| 17 | 1−0.293T+17T2 |
| 23 | 1−6.83T+23T2 |
| 29 | 1−5.62T+29T2 |
| 31 | 1+4.78T+31T2 |
| 37 | 1−11.5T+37T2 |
| 41 | 1+5.57T+41T2 |
| 43 | 1−4.78T+43T2 |
| 47 | 1+12.7T+47T2 |
| 53 | 1−4.12T+53T2 |
| 59 | 1+59T2 |
| 61 | 1−11.5T+61T2 |
| 67 | 1−10.2T+67T2 |
| 71 | 1−3.53T+71T2 |
| 73 | 1+10.4T+73T2 |
| 79 | 1+2.22T+79T2 |
| 83 | 1−17.7T+83T2 |
| 89 | 1−5.08T+89T2 |
| 97 | 1−9.52T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.382070942984535254732356641169, −7.43705186614841804902617808809, −6.71386643370478455615051921590, −6.25131841746072517554080176928, −5.35247709401873527083703035981, −4.65645194978473531664161392639, −3.72525572088040779686104705666, −2.80320590836861123465855947910, −1.95305875134974003450157961823, −0.852901522617359620717966458676,
0.852901522617359620717966458676, 1.95305875134974003450157961823, 2.80320590836861123465855947910, 3.72525572088040779686104705666, 4.65645194978473531664161392639, 5.35247709401873527083703035981, 6.25131841746072517554080176928, 6.71386643370478455615051921590, 7.43705186614841804902617808809, 8.382070942984535254732356641169