L(s) = 1 | + 4.21·5-s + 7-s − 2·11-s + 0.643·13-s + 4.21·17-s − 19-s − 2·23-s + 12.7·25-s − 4.93·29-s + 1.35·31-s + 4.21·35-s + 10.4·37-s + 4·41-s − 5.79·43-s − 5.50·47-s + 49-s − 6.21·53-s − 8.43·55-s + 14.4·61-s + 2.71·65-s + 8.43·67-s + 6.21·71-s + 3.28·73-s − 2·77-s + 15.1·79-s − 2.93·83-s + 17.7·85-s + ⋯ |
L(s) = 1 | + 1.88·5-s + 0.377·7-s − 0.603·11-s + 0.178·13-s + 1.02·17-s − 0.229·19-s − 0.417·23-s + 2.55·25-s − 0.915·29-s + 0.243·31-s + 0.713·35-s + 1.71·37-s + 0.624·41-s − 0.883·43-s − 0.802·47-s + 0.142·49-s − 0.854·53-s − 1.13·55-s + 1.84·61-s + 0.336·65-s + 1.03·67-s + 0.737·71-s + 0.384·73-s − 0.227·77-s + 1.70·79-s − 0.321·83-s + 1.92·85-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.123570634 |
L(21) |
≈ |
3.123570634 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 19 | 1+T |
good | 5 | 1−4.21T+5T2 |
| 11 | 1+2T+11T2 |
| 13 | 1−0.643T+13T2 |
| 17 | 1−4.21T+17T2 |
| 23 | 1+2T+23T2 |
| 29 | 1+4.93T+29T2 |
| 31 | 1−1.35T+31T2 |
| 37 | 1−10.4T+37T2 |
| 41 | 1−4T+41T2 |
| 43 | 1+5.79T+43T2 |
| 47 | 1+5.50T+47T2 |
| 53 | 1+6.21T+53T2 |
| 59 | 1+59T2 |
| 61 | 1−14.4T+61T2 |
| 67 | 1−8.43T+67T2 |
| 71 | 1−6.21T+71T2 |
| 73 | 1−3.28T+73T2 |
| 79 | 1−15.1T+79T2 |
| 83 | 1+2.93T+83T2 |
| 89 | 1−4T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.246812586254922099049160179159, −7.67029842533276008740202102884, −6.60591933293205581966952345133, −6.07163969672511990257431250265, −5.37356461999106883584944244057, −4.90073649282574003463116397172, −3.67499095781995070956076402195, −2.61492271612151799254123814915, −1.98789198409049578848396519701, −1.03180243000369693299706856890,
1.03180243000369693299706856890, 1.98789198409049578848396519701, 2.61492271612151799254123814915, 3.67499095781995070956076402195, 4.90073649282574003463116397172, 5.37356461999106883584944244057, 6.07163969672511990257431250265, 6.60591933293205581966952345133, 7.67029842533276008740202102884, 8.246812586254922099049160179159