Properties

Label 2-4788-1.1-c1-0-21
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.21·5-s + 7-s − 2·11-s + 0.643·13-s + 4.21·17-s − 19-s − 2·23-s + 12.7·25-s − 4.93·29-s + 1.35·31-s + 4.21·35-s + 10.4·37-s + 4·41-s − 5.79·43-s − 5.50·47-s + 49-s − 6.21·53-s − 8.43·55-s + 14.4·61-s + 2.71·65-s + 8.43·67-s + 6.21·71-s + 3.28·73-s − 2·77-s + 15.1·79-s − 2.93·83-s + 17.7·85-s + ⋯
L(s)  = 1  + 1.88·5-s + 0.377·7-s − 0.603·11-s + 0.178·13-s + 1.02·17-s − 0.229·19-s − 0.417·23-s + 2.55·25-s − 0.915·29-s + 0.243·31-s + 0.713·35-s + 1.71·37-s + 0.624·41-s − 0.883·43-s − 0.802·47-s + 0.142·49-s − 0.854·53-s − 1.13·55-s + 1.84·61-s + 0.336·65-s + 1.03·67-s + 0.737·71-s + 0.384·73-s − 0.227·77-s + 1.70·79-s − 0.321·83-s + 1.92·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.123570634\)
\(L(\frac12)\) \(\approx\) \(3.123570634\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 4.21T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 0.643T + 13T^{2} \)
17 \( 1 - 4.21T + 17T^{2} \)
23 \( 1 + 2T + 23T^{2} \)
29 \( 1 + 4.93T + 29T^{2} \)
31 \( 1 - 1.35T + 31T^{2} \)
37 \( 1 - 10.4T + 37T^{2} \)
41 \( 1 - 4T + 41T^{2} \)
43 \( 1 + 5.79T + 43T^{2} \)
47 \( 1 + 5.50T + 47T^{2} \)
53 \( 1 + 6.21T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 14.4T + 61T^{2} \)
67 \( 1 - 8.43T + 67T^{2} \)
71 \( 1 - 6.21T + 71T^{2} \)
73 \( 1 - 3.28T + 73T^{2} \)
79 \( 1 - 15.1T + 79T^{2} \)
83 \( 1 + 2.93T + 83T^{2} \)
89 \( 1 - 4T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.246812586254922099049160179159, −7.67029842533276008740202102884, −6.60591933293205581966952345133, −6.07163969672511990257431250265, −5.37356461999106883584944244057, −4.90073649282574003463116397172, −3.67499095781995070956076402195, −2.61492271612151799254123814915, −1.98789198409049578848396519701, −1.03180243000369693299706856890, 1.03180243000369693299706856890, 1.98789198409049578848396519701, 2.61492271612151799254123814915, 3.67499095781995070956076402195, 4.90073649282574003463116397172, 5.37356461999106883584944244057, 6.07163969672511990257431250265, 6.60591933293205581966952345133, 7.67029842533276008740202102884, 8.246812586254922099049160179159

Graph of the $Z$-function along the critical line