L(s) = 1 | + 4.23·5-s − 7-s + 2.61·11-s + 3.47·13-s + 5.85·17-s + 19-s + 8.23·23-s + 12.9·25-s + 4.61·29-s − 3.85·31-s − 4.23·35-s − 8.23·37-s − 11.5·41-s + 4.47·43-s − 7.47·47-s + 49-s − 6.09·53-s + 11.0·55-s − 11·59-s − 4.23·61-s + 14.7·65-s − 7.56·67-s + 3.76·71-s + 3.61·73-s − 2.61·77-s − 4.47·79-s − 10.5·83-s + ⋯ |
L(s) = 1 | + 1.89·5-s − 0.377·7-s + 0.789·11-s + 0.962·13-s + 1.41·17-s + 0.229·19-s + 1.71·23-s + 2.58·25-s + 0.857·29-s − 0.692·31-s − 0.716·35-s − 1.35·37-s − 1.80·41-s + 0.681·43-s − 1.08·47-s + 0.142·49-s − 0.836·53-s + 1.49·55-s − 1.43·59-s − 0.542·61-s + 1.82·65-s − 0.923·67-s + 0.446·71-s + 0.423·73-s − 0.298·77-s − 0.503·79-s − 1.15·83-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.420814716 |
L(21) |
≈ |
3.420814716 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1−T |
good | 5 | 1−4.23T+5T2 |
| 11 | 1−2.61T+11T2 |
| 13 | 1−3.47T+13T2 |
| 17 | 1−5.85T+17T2 |
| 23 | 1−8.23T+23T2 |
| 29 | 1−4.61T+29T2 |
| 31 | 1+3.85T+31T2 |
| 37 | 1+8.23T+37T2 |
| 41 | 1+11.5T+41T2 |
| 43 | 1−4.47T+43T2 |
| 47 | 1+7.47T+47T2 |
| 53 | 1+6.09T+53T2 |
| 59 | 1+11T+59T2 |
| 61 | 1+4.23T+61T2 |
| 67 | 1+7.56T+67T2 |
| 71 | 1−3.76T+71T2 |
| 73 | 1−3.61T+73T2 |
| 79 | 1+4.47T+79T2 |
| 83 | 1+10.5T+83T2 |
| 89 | 1−15.7T+89T2 |
| 97 | 1+3.47T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.587287418001297337183531412402, −7.40130183663487694173232031749, −6.56471656679738190925103441178, −6.22370627862026535303519004543, −5.39045758100929636203926446832, −4.88233114689324812183368757222, −3.44019574146790754690723858989, −2.99936024936045281814387860215, −1.66296625781287452626093035839, −1.19450046447890827961442499760,
1.19450046447890827961442499760, 1.66296625781287452626093035839, 2.99936024936045281814387860215, 3.44019574146790754690723858989, 4.88233114689324812183368757222, 5.39045758100929636203926446832, 6.22370627862026535303519004543, 6.56471656679738190925103441178, 7.40130183663487694173232031749, 8.587287418001297337183531412402