Properties

Label 2-4788-1.1-c1-0-26
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.23·5-s − 7-s + 2.61·11-s + 3.47·13-s + 5.85·17-s + 19-s + 8.23·23-s + 12.9·25-s + 4.61·29-s − 3.85·31-s − 4.23·35-s − 8.23·37-s − 11.5·41-s + 4.47·43-s − 7.47·47-s + 49-s − 6.09·53-s + 11.0·55-s − 11·59-s − 4.23·61-s + 14.7·65-s − 7.56·67-s + 3.76·71-s + 3.61·73-s − 2.61·77-s − 4.47·79-s − 10.5·83-s + ⋯
L(s)  = 1  + 1.89·5-s − 0.377·7-s + 0.789·11-s + 0.962·13-s + 1.41·17-s + 0.229·19-s + 1.71·23-s + 2.58·25-s + 0.857·29-s − 0.692·31-s − 0.716·35-s − 1.35·37-s − 1.80·41-s + 0.681·43-s − 1.08·47-s + 0.142·49-s − 0.836·53-s + 1.49·55-s − 1.43·59-s − 0.542·61-s + 1.82·65-s − 0.923·67-s + 0.446·71-s + 0.423·73-s − 0.298·77-s − 0.503·79-s − 1.15·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.420814716\)
\(L(\frac12)\) \(\approx\) \(3.420814716\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 - 4.23T + 5T^{2} \)
11 \( 1 - 2.61T + 11T^{2} \)
13 \( 1 - 3.47T + 13T^{2} \)
17 \( 1 - 5.85T + 17T^{2} \)
23 \( 1 - 8.23T + 23T^{2} \)
29 \( 1 - 4.61T + 29T^{2} \)
31 \( 1 + 3.85T + 31T^{2} \)
37 \( 1 + 8.23T + 37T^{2} \)
41 \( 1 + 11.5T + 41T^{2} \)
43 \( 1 - 4.47T + 43T^{2} \)
47 \( 1 + 7.47T + 47T^{2} \)
53 \( 1 + 6.09T + 53T^{2} \)
59 \( 1 + 11T + 59T^{2} \)
61 \( 1 + 4.23T + 61T^{2} \)
67 \( 1 + 7.56T + 67T^{2} \)
71 \( 1 - 3.76T + 71T^{2} \)
73 \( 1 - 3.61T + 73T^{2} \)
79 \( 1 + 4.47T + 79T^{2} \)
83 \( 1 + 10.5T + 83T^{2} \)
89 \( 1 - 15.7T + 89T^{2} \)
97 \( 1 + 3.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.587287418001297337183531412402, −7.40130183663487694173232031749, −6.56471656679738190925103441178, −6.22370627862026535303519004543, −5.39045758100929636203926446832, −4.88233114689324812183368757222, −3.44019574146790754690723858989, −2.99936024936045281814387860215, −1.66296625781287452626093035839, −1.19450046447890827961442499760, 1.19450046447890827961442499760, 1.66296625781287452626093035839, 2.99936024936045281814387860215, 3.44019574146790754690723858989, 4.88233114689324812183368757222, 5.39045758100929636203926446832, 6.22370627862026535303519004543, 6.56471656679738190925103441178, 7.40130183663487694173232031749, 8.587287418001297337183531412402

Graph of the $Z$-function along the critical line